Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T07:56:53.940Z Has data issue: false hasContentIssue false

Chemical modifications and reactions in DNA nanostructures

Published online by Cambridge University Press:  08 December 2017

Kurt V. Gothelf*
Affiliation:
Centre for DNA Nanotechnology, Aarhus University, Denmark; kvg@chem.au.dk
Get access

Abstract

DNA nanotechnology has the power to form self-assembled and well-defined nanostructures, such as DNA origami, where the relative positions of each atom are known with subnanometer precision. Our ability to synthesize oligonucleotides with chemical modifications in almost any desired position provides rich opportunity to incorporate molecules, biomolecules, and a variety of nanomaterials in specific positions on DNA nanostructures. Several standard modifications for oligonucleotides are available commercially, such as dyes, biotin, and chemical handles, and such modified oligonucleotides can be applied directly for integration in DNA nanostructures. In another approach, various molecules and nanomaterials have been functionalized with DNA for incorporation in DNA nanostructures by hybridization to staple strands extending from the origami structure. Multiple copies of functionalities such as hydrocarbons or steroids have been introduced to change the surface properties of DNA origami structures, either to protect the DNA nanostructure or to dock it into membranes and other hydrophobic surfaces. DNA nanostructures have also been used to control covalent chemical reactions. This article provides an introduction to chemical methods applied to DNA nanotechnology and, through examples, shows how this increases the potential of DNA nanostructures as functional nanomaterials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Song, K.-M., Lee, S., Ban, C., Sensors 12, 612 (2012).CrossRefGoogle Scholar
Willner, I., Shlyahovsky, B., Zayats, M., Willner, B., Chem. Soc. Rev. 37, 1153 (2008).Google Scholar
Lönnberg, H., Beilstein J. Org. Chem. 13, 1368 (2017).Google Scholar
Lapa, S.A., Chudinov, A.V., Timofeev, E.N., Mol. Biotechnol. 58, 79 (2016).Google Scholar
Beater, S., Raab, M., Tinnefeld, P., Methods Cell Biol. 123, 449 (2014).Google Scholar
Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V., Kjems, J., Nature 459, 73 (2009).Google Scholar
Stein, I.H., Steinhauer, C., Tinnefeld, P., J. Am. Chem. Soc. 133, 4193 (2011).CrossRefGoogle Scholar
DeChancie, J., Houk, K.N., J. Am. Chem. Soc. 129, 5419 (2007).Google Scholar
Clark, J., Singer, E.M., Korns, D.R., Smith, S.S., BioTechniques 36, 992 (2004).CrossRefGoogle Scholar
Asanuma, H., Takaradam, T., Yoshida, T., Tamaru, D., Liang, X., Komiyama, M., Angew. Chem. Int. Ed. Engl. 40, 2671 (2001).Google Scholar
Asanuma, H., Liang, X.G., Yoshida, T., Komiyama, M., Chembiochem 2, 39 (2001).Google Scholar
Kuzyk, A., Yang, Y.Y., Duan, X.Y., Stoll, S., Govorov, A.O., Sugiyama, H., Endo, M., Liu, N., Nat. Commun. 7, 10591 (2016).Google Scholar
Suzuki, Y., Endo, M., Yang, Y., Sugiyama, H., J. Am. Chem. Soc. 136, 1714 (2014).Google Scholar
Langecker, M., Arnaut, V., Martin, T.G., List, J., Renner, S., Mayer, M., Dietz, H., Simmel, F.C., Science 338, 932 (2012).Google Scholar
Göpfrich, K., Li, C.-Y., Ricci, M., Bhamidimarri, S.P., Yoo, J., Gyenes, B., Ohmann, A., Winterhalter, M., Aksimentiev, A., Keyser, U.F., ACS Nano 10, 8207 (2016).Google Scholar
Zhou, C., Zhang, Y., Dong, Y., Wu, F., Wang, D., Xin, L., Liu, D., Adv. Mater. 28, 9819 (2016).CrossRefGoogle Scholar
Edwardson, T.G., Carneiro, K.M., McLaughlin, C.K., Serpell, C.J., Sleiman, H.F., Nat. Chem. 5, 868 (2013).Google Scholar
Perrault, S.D., Shih, W.M., ACS Nano 8, 5132 (2014).Google Scholar
Zhang, Z., Yang, Y., Pincet, F., Llaguno, M.C., Lin, C., Nat. Chem. 9, 653 (2017).Google Scholar
Niemeyer, C.M., Angew. Chem. Int. Ed. Engl. 49, 1200 (2010).Google Scholar
Zheng, M., Zheng, L., Zhang, P., Li, J., Zhang, Y., Molecules 20, 3190 (2015).Google Scholar
Sacca, B., Niemeyer, C.M., Chem. Soc. Rev. 40, 5910 (2011).Google Scholar
Trads, J.B., Tørring, T., Gothelf, K.V., Acc. Chem. Res. 50, 1367 (2017).Google Scholar
Douglas, S.M., Bachelet, I., Church, G.M., Science 335, 831 (2012).Google Scholar
Fu, J., Liu, M., Liu, Y., Woodbury, N.W., Yan, H., J. Am. Chem. Soc. 134, 5516 (2012).Google Scholar
Rajendran, A., Nakata, E., Nakano, S., Morii, T., Chembiochem 18, 696 (2017).Google Scholar
Samanta, D., Sarkar, A., Chem. Soc. Rev. 40, 2567 (2011).Google Scholar
Pei, H., Lu, N., Wen, Y., Song, S., Liu, Y., Yan, H., Fan, C., Adv. Mater. 22, 4754 (2010).Google Scholar
Gopinath, A., Rothemund, P.W.K., ACS Nano 8, 12030 (2014).Google Scholar
Sharma, J., Chhabra, R., Andersen, C.S., Gothelf, K.V., Yan, H., Liu, Y., J. Am. Chem. Soc. 130, 7820 (2008).Google Scholar
Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Roller, E.-M., Högele, A., Simmel, F.C., Govorov, A.O., Liedl, T., Nature 483, 311 (2012).Google Scholar
Samanta, A., Banerjee, S., Liu, Y., Nanoscale 7, 2210 (2015).Google Scholar
Knudsen, J.B., Liu, L., Kodal, A.L.B., Madsen, M., Li, Q., Song, J., Woehrstein, J.B., Wickham, S.F., Strauss, M.T., Schueder, F., Vinther, J., Krissanaprasit, A., Gudnason, D., Smith, A.A., Ogaki, R., Zelikin, A.N., Besenbacher, F., Birkedal, V., Yin, P., Shih, W.M., Jungmann, R., Dong, M., Gothelf, K.V., Nat. Nanotechnol. 10, 892 (2015).Google Scholar
Maune, H.T., Han, S.-P., Barish, R.D., Bockrath, M., Goddard, W.A., Rothemund, P.W.K., Winfree, E., Nat. Nanotechnol. 5, 61 (2010).CrossRefGoogle Scholar
Zhang, T., Neumann, A., Lindlau, J., Wu, Y., Pramanik, G., Naydenov, B., Jelezko, F., Schüder, F., Huber, S., Huber, M., Stehr, F., Högele, A., Weil, T., Liedl, T., J. Am. Chem. Soc. 137, 9776 (2015).CrossRefGoogle Scholar
Voigt, N.V., Tørring, T., Rotaru, A., Jacobsen, M.F., Ravnsbæk, J.B., Subramani, R., Mamdouh, W., Kjems, J., Mokhir, A., Besenbacher, F., Gothelf, K.V., Nat. Nanotechnol. 5, 200 (2010).Google Scholar
Shen, B., Tapio, K., Linko, V., Kostiainen, M.A., Toppari, J.J., Nanomaterials 6, 146 (2016).Google Scholar
Gates, E.P., Dearden, A.M., Woolley, A.T., Crit. Rev. Anal. Chem. 44, 354 (2014).Google Scholar
Gorska, K., Winssinger, N., Angew. Chem. Int. Ed. Engl. 52, 6820 (2013).Google Scholar
Li, X., Liu, D.R., Angew. Chem. Int. Ed. Engl. 43, 4848 (2004).CrossRefGoogle Scholar
Cassinelli, V., Oberleitner, B., Sobotta, J., Nickels, P., Grossi, G., Kempter, S., Frischmuth, T., Liedl, T., Manetto, A., Angew. Chem. Int. Ed. Engl. 54, 7795 (2015).Google Scholar
Goodnow, R.A. Jr., Dumelin, C.E., Keefe, A.D., Nat. Rev. Drug Discov. 16, 131 (2017).Google Scholar
Gothelf, K.V., Brown, R.S., Chem. Eur. J. 11, 1062 (2005).Google Scholar
McKee, M.L., Milnes, P.J., Bath, J., Stulz, E., O’Reilly, R.K., Turberfield, A.J., J. Am. Chem. Soc. 134, 1446 (2012).Google Scholar
He, Y., Liu, D.R., Nat. Nanotechnol. 5, 778 (2010).Google Scholar
Meng, W., Muscat, R.A., McKee, M.L., Milnes, P.J., El-Sagheer, A.H., Bath, J., Davis, B.G., Brown, T., O’Reilly, R.K., Turberfield, A.J., Nat. Chem. 8, 542 (2016).Google Scholar
Yang, Y., Goetzfried, M.A., Hidaka, K., You, M., Tan, W., Sugiyama, H., Endo, M., Nano Lett. 15, 6672 (2015).Google Scholar
Gopinath, A., Miyazono, E., Faraon, A., Rothemund, P.W.K., Nature 535, 401 (2016).CrossRefGoogle Scholar