Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:56:17.878Z Has data issue: false hasContentIssue false

Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation

Published online by Cambridge University Press:  10 November 2017

Xiulan Zhao
Affiliation:
Peking University, China; xiulanzhls@pku.edu.cn
Shuchen Zhang
Affiliation:
Peking University, China; zhangsc-cnc@pku.edu.cn
Zhenxing Zhu
Affiliation:
Tsinghua University, China; zzx15@mails.tsinghua.edu.cn
Jin Zhang
Affiliation:
Peking University, China; jinzhang@pku.edu.cn
Fei Wei
Affiliation:
Tsinghua University, China; wf-dce@mail.tsinghua.edu.cn
Yan Li
Affiliation:
Peking University, China; yanli@pku.edu.cn
Get access

Abstract

Catalysts play essential roles in the chemical vapor deposition of single-wall carbon nanotubes (SWCNTs). In this article, we summarize studies on catalysts for the structure-controlled growth and mass production of SWCNTs, discussing the main progress and the remaining challenges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jorio, A., Dresselhaus, G., Dresselhaus, M.S., Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications (Springer, Heidelberg, 2008).Google Scholar
Zhang, Q., Huang, J.-Q., Qian, W.-Z., Zhang, Y.-Y., Wei, F., Small 9, 1237 (2013).Google Scholar
Kumar, M., Ando, Y., J. Nanosci. Nanotechnol. 10, 3739 (2010).Google Scholar
Yang, F., Wang, X., Li, M., Liu, X., Zhao, X., Zhang, D., Zhang, Y., Yang, J., Li, Y., Acc. Chem. Res. 49, 606 (2016).Google Scholar
Sanchez-Valencia, J.R., Dienel, T., Groning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P., Fasel, R., Nature 512, 61 (2014).Google Scholar
Zhang, S., Kang, L., Wang, X., Tong, L., Yang, L., Wang, Z., Qi, K., Deng, S., Li, Q., Bai, X., Nature 543, 234 (2017).Google Scholar
Yang, F., Wang, X., Zhang, D., Yang, J., Luo, D., Xu, Z., Wei, J., Wang, J.-Q., Xu, Z., Peng, F., Li, X., Li, R., Li, Y., Li, M., Bai, X., Ding, F., Li, Y., Nature 510, 522 (2014).CrossRefGoogle Scholar
Hu, Y., Kang, L., Zhao, Q., Zhong, H., Zhang, S., Yang, L., Wang, Z., Lin, J., Li, Q., Zhang, Z., Nat. Commun. 6, 6099 (2015).Google Scholar
Zhang, R., Zhang, Y., Zhang, Q., Xie, H., Qian, W., Wei, F., ACS Nano 7, 6156 (2013).Google Scholar
Zhang, R., Zhang, Y., Wei, F., Acc. Chem. Res. 50, 179 (2017).Google Scholar
Liu, C., Cheng, H.-M., J. Am. Chem. Soc. 138, 6690 (2016).CrossRefGoogle Scholar
Artyukhov, V.I., Penev, E.S., Yakobson, B.I., Nat. Commun. 5, 4892 (2014).Google Scholar
Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Appl. Phys. Lett. 60, 2204 (1992).Google Scholar
Li, J., Liu, K., Liang, S., Zhou, W., Pierce, M., Wang, F., Peng, L., Liu, J., ACS Nano 8, 554 (2013).Google Scholar
Yao, Y., Dai, X., Liu, R., Zhang, J., Liu, Z., J. Phys. Chem. C 113, 13051 (2009).Google Scholar
Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., Proc. Natl. Acad. Sci. U.S.A. 102, 16141 (2005).CrossRefGoogle Scholar
Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Chem. Phys. Lett. 260, 471 (1996).Google Scholar
Cheung, C.L., Kurtz, A., Park, H., Lieber, C.M., J. Phys. Chem. B, 106, 2429 (2002).CrossRefGoogle Scholar
Anderson, P.E., Rodríguez, N.M., Chem. Mater. 12, 823 (2000).CrossRefGoogle Scholar
Cheung, C.L., Hafner, J.H., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 97, 3809 (2000).Google Scholar
Li, Y., Liu, J., Wang, Y., Wang, Z.L., Chem. Mater. 13, 1008 (2001).Google Scholar
Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D., Dai, H., J. Phys. Chem. B 105, 11424 (2001).Google Scholar
Yin, P., Li, D., Liu, T., Chem. Soc. Rev. 41, 7368 (2012).Google Scholar
Peng, F., Luo, D., Sun, H., Wang, J., Yang, F., Li, R., Yang, J., Li, Y., Chin. Sci. Bull. 58, 433 (2013).Google Scholar
Zhang, S., Tong, L., Hu, Y., Kang, L., Zhang, J., J. Am. Chem. Soc. 137, 8904 (2015).Google Scholar
Yang, F., Wang, X., Zhang, D., Qi, K., Yang, J., Xu, Z., Li, M., Zhao, X., Bai, X., Li, Y., J. Am. Chem. Soc. 137, 8688 (2015).Google Scholar
Yang, F., Wang, X., Si, J., Zhao, X., Qi, K., Jin, C., Zhang, Z., Li, M., Zhang, D., Yang, J., Zhang, Z., Xu, Z., Peng, L.-M., Bai, X., Li, Y., ACS Nano 11, 186 (2016).Google Scholar
Chen, J., Xu, X., Zhang, L., Huang, S., Nano-Micro Lett. 7, 353 (2015).Google Scholar
Chen, Y., Zhang, J., Carbon 49, 3316 (2011).Google Scholar
Ago, H., Ayagaki, T., Ogawa, Y., Tsuji, M., J. Phys. Chem. C 115, 13247 (2011).Google Scholar
Yomogida, Y., Tanaka, T., Zhang, M., Yudasaka, M., Wei, X., Kataura, H., Nat. Commun. 7, 12056 (2016).Google Scholar
Jain, R.M., Howden, R., Tvrdy, K., Shimizu, S., Hilmer, A.J., McNicholas, T.P., Gleason, K.K., Strano, M.S., Adv. Mater. 24, 4436 (2012).Google Scholar
Isborn, C.M., Tang, C., Martini, A., Johnson, E.R., Otero-de-la-Roza, A., Tung, V.C., J. Phys. Chem. Lett. 4, 2914 (2013).Google Scholar
Murakami, N., Tango, Y., Miyake, H., Tajima, T., Nishina, Y., Kurashige, W., Negishi, Y., Takaguchi, Y., Sci. Rep. 7, 43445 (2017).Google Scholar
Zhang, F., Hou, P.-X., Liu, C., Cheng, H.-M., Carbon 102, 181 (2016).Google Scholar
Li, M., Liu, X., Zhao, X., Yang, F., Wang, X., Li, Y., Top. Curr. Chem. 375, 29 (2017).Google Scholar
Wang, Y., Kim, M.J., Shan, H., Kittrell, C., Fan, H., Ericson, L.M., Hwang, W.-F., Arepalli, S., Hauge, R.H., Smalley, R.E., Nano Lett. 5, 997 (2005).Google Scholar
Reich, S., Li, L., Robertson, J., Chem. Phys. Lett. 421, 469 (2006).Google Scholar
Fouquet, M., Bayer, B., Esconjauregui, S., Blume, R., Warner, J., Hofmann, S., Schlögl, R., Thomsen, C., Robertson, J., Phys. Rev. B 85, 235411 (2012).Google Scholar
Ishigami, N., Ago, H., Imamoto, K., Tsuji, M., Iakoubovskii, K., Minami, N., J. Am. Chem. Soc. 130, 9918 (2008).Google Scholar
An, H., Kumamoto, A., Takezaki, H., Ohyama, S., Qian, Y., Inoue, T., Ikuhara, Y., Chiashi, S., Xiang, R., Maruyama, S., Nanoscale 8, 14523 (2016).CrossRefGoogle Scholar
Wang, H., Yuan, Y., Wei, L., Goh, K., Yu, D.S., Chen, Y., Carbon 81, 1 (2015).Google Scholar
He, M., Chernov, A.I., Fedotov, P.V., Obraztsova, E.D., Rikkinen, E., Zhu, Z., Sainio, J., Jiang, H., Nasibulin, A.G., Kauppinen, E.I., Niemelä, M., Krause, A.O.I., Chem. Commun. 47, 1219 (2011).CrossRefGoogle Scholar
Li, N., Wang, X., Derrouiche, S., Haller, G.L., Pfefferle, L.D., ACS Nano 4, 1759 (2010).Google Scholar
He, M., Jiang, H., Liu, B., Fedotov, P.V., Chernov, A.I., Obraztsova, E.D., Cavalca, F., Wagner, J.B., Hansen, T.W., Anoshkin, I.V., Obraztsova, E.A., Belkin, A.V., Sairanen, E., Nasibulin, A.G., Lehtonen, J., Kauppinen, E.I., Sci. Rep. 3, 1460 (2013).Google Scholar
Lolli, G., Zhang, L., Balzano, L., Sakulchaicharoen, N., Tan, Y., Resasco, D.E., J. Phys. Chem. B 110, 2108 (2006).Google Scholar
Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E., Weisman, R.B., J. Am. Chem. Soc. 125, 11186 (2003).Google Scholar
He, M., Chernov, A.I., Fedotov, P.V., Obraztsova, E.D., Sainio, J., Rikkinen, E., Jiang, H., Zhu, Z., Tian, Y., Kauppinen, E.I., J. Am. Chem. Soc. 132, 13994 (2010).Google Scholar
He, M., Liu, B., Chernov, A.I., Obraztsova, E.D., Kauppi, I., Jiang, H., Anoshkin, I., Cavalca, F., Hansen, T.W., Wagner, J.B., Nasibulin, A.G., Kauppinen, E.I., Linnekoski, J., Niemelä, M., Lehtonen, J., Chem. Mater. 24, 1796 (2012).Google Scholar
Loebick, C.Z., Derrouiche, S., Marinkovic, N., Wang, C., Hennrich, F., Kappes, M.M., Haller, G.L., Pfefferle, L.D., J. Phys. Chem. C 113, 21611 (2009).Google Scholar
Zoican Loebick, C., Derrouiche, S., Fang, F., Li, N., Haller, G.L., Pfefferle, L.D., Appl. Catal. A Gen. 368, 40 (2009).Google Scholar
He, M., Fedotov, P.V., Chernov, A., Obraztsova, E.D., Jiang, H., Wei, N., Cui, H., Sainio, J., Zhang, W., Jin, H., Karppinen, M., Kauppinen, E.I., Loiseau, A., Carbon 108, 521 (2016).Google Scholar
Liu, B., Ren, W., Li, S., Liu, C., Cheng, H.-M., Chem. Commun. 48, 2409 (2012).Google Scholar
Wang, H., Wang, B., Quek, X.Y., Wei, L., Zhao, J., Li, L.J., Chan-Park, M.B., Yang, Y., Chen, Y., J. Am. Chem. Soc. 132, 16747 (2010).CrossRefGoogle Scholar
Yuan, Y., Karahan, H.E., Yıldırım, C., Wei, L., Birer, Ö., Zhai, S., Lau, R., Chen, Y., Nanoscale 8, 17705 (2016).Google Scholar
Kumar, M., Ando, Y., Carbon 43, 533 (2005).Google Scholar
Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., Wang, G., Science 274, 1701 (1996).Google Scholar
Zhu, Z., Wei, N., Xie, H., Zhang, R., Bai, Y., Wang, Q., Zhang, C., Wang, S., Peng, L., Dai, L., Wei, F., Sci. Adv. 2, e1601572 (2016).Google Scholar
Wang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Li, Y., Jiang, K., Fan, S., Nano Lett. 9, 3137 (2009).Google Scholar
Zhang, Q., Zhao, M.-Q., Huang, J.-Q., Nie, J.-Q., Wei, F., Carbon 48, 1196 (2010).CrossRefGoogle Scholar
Ago, H., Imamura, S., Okazaki, T., Saito, T., Yumura, M., Tsuji, M., J. Phys. Chem. B 109, 10035 (2005).Google Scholar
Zhang, Q., Huang, J.-Q., Zhao, M.-Q., Qian, W.-Z., Wei, F., ChemSusChem 4, 864 (2011).Google Scholar
Liu, K., Jiang, K., Feng, C., Chen, Z., Fan, S., Carbon 43, 2850 (2005).Google Scholar
Liu, L., Fan, S., J. Am. Chem. Soc. 123, 11502 (2001).Google Scholar
Harutyunyan, A.R., J. Nanosci. Nanotechnol. 9, 2480 (2009).Google Scholar
Jiang, A., Awasthi, N., Kolmogorov, A.N., Setyawan, W., Börjesson, A., Bolton, K., Harutyunyan, A.R., Curtarolo, S., Phys. Rev. B Condens. Matter 75, 205426 (2007).Google Scholar
Xu, X., Zhang, Z., Qiu, L., Zhuang, J., Zhang, L., Wang, H., Liao, C., Song, H., Qiao, R., Gao, P., Hu, Z., Liao, L., Liao, Z., Yu, D., Wang, E., Ding, F., Peng, H., Liu, K., Nat. Nanotechnol. 11, 930 (2016).Google Scholar
Xiang, R., Luo, G.H., Qian, W.Z., Wang, Y., Wei, F., Li, Q., Chem. Vapor Depos. 13, 533 (2007).Google Scholar
Zhang, Q., Zhao, M., Liu, Y., Cao, A., Qian, W., Lu, Y., Wei, F., Adv. Mater. 21, 2876 (2009).Google Scholar
Zhao, M.-Q., Zhang, Q., Jia, X.-L., Huang, J.-Q., Zhang, Y.-H., Wei, F., Adv. Funct. Mater. 20, 677 (2010).Google Scholar