Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:00:08.672Z Has data issue: false hasContentIssue false

Bond order potentials for fracture, wear, and plasticity

Published online by Cambridge University Press:  09 May 2012

Lars Pastewka
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM and Institute for Applied Materials IAM at Karlsruhe Institute of Technology, Germany; lars.pastewka@iwm.fraunhofer.de
Matous Mrovec
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM and Institute for Applied Materials IAM at Karlsruhe Institute of Technology, Germany; matous.mrovec@kit.edu
Michael Moseler
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM and Physics Department of the University of Freiburg, Germany; michael.moseler@iwm.fraunhofer.de
Peter Gumbsch
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM and Institute for Applied Materials IAM at Karlsruhe Institute of Technology, Germany; peter.gumbsch@kit.edu
Get access

Abstract

Coulson’s bond order is a chemically intuitive quantity that measures the difference in the occupation of bonding and anti-bonding orbitals. Both empirical and rigorously derived bond order expressions have evolved in the course of time and proven very useful for atomistic modeling of materials. The latest generation of empirical formulations has recently been augmented by screening-function approaches. Using friction and wear of diamond and diamond-like carbon as examples, we demonstrate that such a screened bond order scheme allows for a faithful description of dynamical bond-breaking processes in materials far from equilibrium. The rigorous bond order expansions are obtained by systematic coarse-graining of the tight binding approximation and form a bridge between the electronic structure and the atomistic modeling hierarchies. They have enabled bottom-up derivations of bond order potentials for covalently bonded semiconductors, transition metals, and multicomponent intermetallics. The recently developed magnetic bond order potential gives a correct description of both directional covalent bonds and magnetic interactions in iron and is able to correctly predict the stability of bulk Fe polymorphs as well as the intricate properties of dislocation cores. The bond order schemes hence represent a family of reliable and powerful models that can be applied in large-scale simulations of complex processes involving fracture, wear, and plasticity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Coulson, C., Proc. R. Soc. London, Ser. A 169, 413 (1939).Google Scholar
2.Pettifor, D.G., Bonding and Structure of Molecules and Solids (Oxford University Press, UK, 1995).CrossRefGoogle Scholar
3.Finnis, M.W., Interatomic Forces in Condensed Matter (Oxford University Press, UK, 2004).Google Scholar
4.Slater, J., Koster, G., Phys. Rev. 94, 1498 (1954).CrossRefGoogle Scholar
5.Abell, G.C., Phys. Rev. B 31, 6184 (1985).CrossRefGoogle Scholar
6.Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).CrossRefGoogle Scholar
7.Tersoff, J., Phys. Rev. B 39, 5566 (1989).CrossRefGoogle Scholar
8.Tersoff, J., Phys. Rev. B 38, 9902 (1988).CrossRefGoogle Scholar
9.Kioseoglou, J., Komninou, P., Karakostas, T., Phys. Status Solidi B 245, 1118 (2008).CrossRefGoogle Scholar
10.Matsunaga, K., Fisher, C., Matsubara, H., Jpn. J. Appl. Phys. 39, 48 (2000).CrossRefGoogle Scholar
11.Albe, K., Comput. Mater. Sci. 10, 111 (1998).CrossRefGoogle Scholar
12.Albe, K., Möller, W., Heinig, K.-H., Radiat. Eff. Defects Solids 141, 85 (1997).CrossRefGoogle Scholar
13.Ni, B., Lee, K.-H., Sinnott, S.B., J. Phys. Condens. Matter 16, 7261 (2004).CrossRefGoogle Scholar
14.Henriksson, K.O.E., Nordlund, K., Phys. Rev. B 79, 144107 (2009).CrossRefGoogle Scholar
15.Müller, M., Erhart, P., Albe, K., J. Phys. Condens. Matter 19, 326220 (2007).CrossRefGoogle Scholar
16.Erhart, P., Albe, K., Phys. Rev. B 71, 035211 (2005).CrossRefGoogle Scholar
17.Juslin, N., Erhart, P., Träskelin, P., Nord, J., Henriksson, K.O.E., Nordlund, K., Salonen, E., Albe, K., J. Appl. Phys. 98, 123520 (2005).CrossRefGoogle Scholar
18.Hammerschmidt, T., Kratzer, P., Scheffler, M., Phys. Rev. B 77, 235303 (2008).CrossRefGoogle Scholar
19.Erhart, P., Juslin, N., Goy, O., Nordlund, K., Müller, R., Albe, K., J. Phys. Condens. Matter 18, 6585 (2006).CrossRefGoogle Scholar
20.Brenner, D.W., Phys. Rev. B 46, 1948 (1992).CrossRefGoogle Scholar
21.Brenner, D.W., Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
22.Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B., J. Phys. Condens. Matter 14, 783 (2002).CrossRefGoogle Scholar
23.Stuart, S.J., Tutein, A.B., Harrison, J.A., J. Chem. Phys. 112, 6472 (2000).CrossRefGoogle Scholar
24.Garrison, B.J., Dawnkaski, E.J., Srivastava, D., Brenner, D.W., Science 255, 835 (1992).CrossRefGoogle Scholar
25.Eckert, M., Neyts, E., Bogaerts, A., Cryst. Growth Des. 10, 3005 (2010).CrossRefGoogle Scholar
26.Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A.C., Robertson, J., Science 309, 1545 (2005).CrossRefGoogle Scholar
27.Jäger, H.U., Albe, K., J. Appl. Phys. 88, 1129 (2000).CrossRefGoogle Scholar
28.Pastewka, L., Salzer, R., Graff, A., Altmann, F., Moseler, M., Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3072 (2009).CrossRefGoogle Scholar
29.Mikulski, P.T., Herman, L.A., Harrison, J.A., Langmuir 21, 12197 (2005).CrossRefGoogle Scholar
30.Buongiorno Nardelli, M., Yakobson, B.I., Bernholc, J., Phys. Rev. Lett. 81, 4656 (1998).CrossRefGoogle Scholar
31.Neek-Amal, M., Peeters, F.M., Phys. Rev. B 82, 085432 (2010).CrossRefGoogle Scholar
32.Marder, M., Comput. Sci. Eng. 1(5), 48 (1999).CrossRefGoogle Scholar
33.Pastewka, L., Pou, P., Pérez, R., Gumbsch, P., Moseler, M., Phys. Rev. B 78, 161402(R) (2008).CrossRefGoogle Scholar
34.Gumbsch, P., in Materials Science for the 21st Century, Shibutani, Y., Ogata, S., Eds. (The Society of Materials Science, JSMS, Japan, 2001), p. 50.Google Scholar
35.Shenderova, O.A., Brenner, D.W., Omeltchenko, A., Su, X., Yang, L.H., Phys. Rev. B 61, 3877 (2000).CrossRefGoogle Scholar
36.Mattoni, A., Ippolito, M., Colombo, L., Phys. Rev. B 76, 224103 (2007).CrossRefGoogle Scholar
37.Daw, M.S., Baskes, M.I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
38.Baskes, M.I., Angelo, J.E., Bisson, C.L., Modell. Simul. Mater. Sci. Eng. 2, 505 (1994).CrossRefGoogle Scholar
39.Baskes, M.I., Phys. Rev. B 46, 2727 (1992).CrossRefGoogle Scholar
40.Tang, M.S., Wang, C.Z., Chan, C.T., Ho, K.M., Phys. Rev. B 53, 979 (1996).CrossRefGoogle Scholar
41.Haas, H., Wang, C.Z., Fähnle, M., Elsässer, C., Ho, K.M., Phys. Rev. B 57, 1461 (1998).CrossRefGoogle Scholar
42.Nguyen-Manh, D., Pettifor, D.G., Vitek, V., Phys. Rev. Lett. 85, 4136 (2000).CrossRefGoogle Scholar
43.Ferrari, A.C., Libassi, A., Tanner, B.K., Stolojan, V., Yuan, J., Brown, L.M., Rodil, S.E., Kleinsorge, B., Robertson, J., Phys. Rev. B 62, 11089 (2000).CrossRefGoogle Scholar
44.McCulloch, D.G., McKenzie, D.R., Goringe, C.M., Phys. Rev. B 61, 2349 (2000).CrossRefGoogle Scholar
45.Bilek, M.M.M., McKenzie, D.R., McCulloch, D.G., Goringe, C.M., Phys. Rev. B 62, 3071 (2000).CrossRefGoogle Scholar
46.Porezag, D., Frauenheim, T., Köhler, T., Seifert, G., Kaschner, R., Phys. Rev. B 51, 12947 (1995).CrossRefGoogle Scholar
47.Marks, N.A., Phys. Rev. B 63, 035401 (2000).CrossRefGoogle Scholar
48.Marks, N.A., J. Phys. Condens. Matter 14, 2901 (2002).CrossRefGoogle Scholar
49.Pastewka, L., Moser, S., Gumbsch, P., Moseler, M., Nat. Mater. 10, 34 (2011).CrossRefGoogle Scholar
50.Pastewka, L., Moser, S., Moseler, M., Tribol. Lett. 39, 49 (2010).CrossRefGoogle Scholar
51.Moras, G., Pastewka, L., Gumbsch, P., Moseler, M., Tribol. Lett. 44, 355 (2011).CrossRefGoogle Scholar
52.Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gumbsch, P., Int. J. Mater. Res. 99, 1136 (2008).CrossRefGoogle Scholar
53.Meng, H.C., Ludema, K.C., Wear 181183, 443 (1995).CrossRefGoogle Scholar
54.Hird, J.R., Field, J.E., Proc. R. Soc. London, Ser. A 460, 3547 (2004).CrossRefGoogle Scholar
55.Tolkowsky, W., DSc degree thesis, City and Guilds College, University of London (1920).Google Scholar
56.van Bouwelen, F.M., Bleloch, A.L., Field, J.E., Brown, L.M., Diamond Relat. Mater. 5, 654 (1996).CrossRefGoogle Scholar
57.Feng, Z., Field, J.E., J. Phys. D: Appl. Phys. 25, A33 (1992).CrossRefGoogle Scholar
58.Konicek, A.R., Grierson, D.S., Gilbert, P.U.P.A., Sawyer, W.G., Sumant, A.V., Carpick, R.W., Phys. Rev. Lett. 100, 235502 (2008).CrossRefGoogle Scholar
59.Sinnott, S.B., Heo, S.-J., Brenner, D.W., Harrison, J.A., Irving, D.L., in Nanotribology and Nanomechanics I, Bhushan, B., Ed. (Springer, Berlin, Heidelberg, 2011), pp. 439525.CrossRefGoogle Scholar
60.Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W., MRS Bull. 18, 50 (1993).CrossRefGoogle Scholar
61.Harrison, J.A., Brenner, D.W., J. Am. Chem. Soc. 116, 10399 (1994).CrossRefGoogle Scholar
62.Peters, E.A.J.F., Europhys. Lett. 66, 311 (2004).CrossRefGoogle Scholar
63.El-Dasher, B.S., Gray, J., Tringe, J., Biener, J., Hamza, A., Wild, C., Worner, E., Koidl, P., Appl. Phys. Lett. 88, 241915 (2006).CrossRefGoogle Scholar
64.Moras, G., Pastewka, L., Schnagl, J., Walter, M., Gumbsch, P., Moseler, M., J. Phys. Chem. C 115, 24653 (2011).CrossRefGoogle Scholar
65.Robertson, J., Mater. Sci. Eng. R 37, 129 (2002).CrossRefGoogle Scholar
66.Enke, K., Thin Solid Films 80, 227 (1981).CrossRefGoogle Scholar
67.Fontaine, J., Le Mogne, T., Loubet, J.L., Belin, M., Thin Solid Films 482, 99 (2005).CrossRefGoogle Scholar
68.Cyrot-Lackmann, F., Adv. Phys. 16, 393 (1967).CrossRefGoogle Scholar
69.Ducastelle, F., Cyrot-Lackmann, F., J. Phys. Chem. Solids 31, 1295 (1970).CrossRefGoogle Scholar
70.Pettifor, D.G., Phys. Rev. Lett. 63, 2480 (1989).CrossRefGoogle Scholar
71.Horsfield, A.P., Bratkovsky, A.M., Fearn, M., Pettifor, D.G., Aoki, M., Phys. Rev. B 53, 12694 (1996).CrossRefGoogle Scholar
72.Drautz, R., Pettifor, D.G., Phys. Rev. B 74, 174117 (2006).CrossRefGoogle Scholar
73.Finnis, M., Drautz, E.R., Prog. Mater. Sci. 52, 131 (2007).CrossRefGoogle Scholar
74.Pettifor, D.G., Aoki, M., in Structural and Phase Stability of Alloys, Moran-Lopez, J.L., Mejia-Lira, F., Sanchez, J.M., Eds. (Plenum Press, New York, 1992), pp. 119132.CrossRefGoogle Scholar
75.Alinaghian, P., Gumbsch, P., Skinner, A.J., Pettifor, D.G., J. Phys. Condens. Matter 5, 5795 (1993).CrossRefGoogle Scholar
76.Pettifor, D.G., Oleinik, I.I., Phys. Rev. B 59, 8487 (1999).CrossRefGoogle Scholar
77.Pettifor, D.G., Oleinik, I.I., Phys. Rev. Lett. 84, 4124 (2000).CrossRefGoogle Scholar
78.Pettifor, D.G., Oleinik, I.I., Phys. Rev. B 65, 172103 (2002).CrossRefGoogle Scholar
79.Gillespie, B.A., Zhou, X.W., Murdick, D.A., Wadley, H.N.G., Drautz, R., Pettifor, D.G., Phys. Rev. B 75, 155207 (2007).CrossRefGoogle Scholar
80.Mrovec, M., Moseler, M., Elsässer, C., Gumbsch, P., Prog. Mater. Sci. 52, 230 (2007).CrossRefGoogle Scholar
81.Oleinik, I.I., Pettifor, D.G., Phys. Rev. B 59, 8500 (1999).CrossRefGoogle Scholar
82.Xu, C.H., Wang, C.Z., Chan, C.T., Ho, K.M., J. Phys. Condens. Matter 4, 6047 (1992).CrossRefGoogle Scholar
83.Finnis, M.W., Sinclair, J.E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
84.Pettifor, D.G., Aoki, M., Gumbsch, P., Horsfield, A.P., Nguyen-Manh, D., Vitek, V., Mater. Sci. Eng., A 192/193, 24 (1995).CrossRefGoogle Scholar
85.Mrovec, M., Elsasser, C., Gumbsch, P., Philos. Mag. 89, 3179 (2009).CrossRefGoogle Scholar
86.Chen, Z.M., Mrovec, M., Gumbsch, P., Modell. Simul. Mater. Sci. Eng. 19, 074002 (2011).CrossRefGoogle Scholar
87.Mrovec, M., Nguyen-Manh, D., Pettifor, D.G., Vitek, V., Phys. Rev. B 69, 094115 (2004).CrossRefGoogle Scholar
88.Mrovec, M., Gröger, R., Bailey, A.G., Nguyen-Manh, D., Elsässer, C., Vitek, V., Phys. Rev. B 75, 104119 (2007).CrossRefGoogle Scholar
89.Cawkwell, M.J., Nguyen-Manh, D., Pettifor, D.G., Vitek, V., Phys. Rev. B 73, 064104 (2006).CrossRefGoogle Scholar
90.Girshick, A., Bratkovsky, A.M., Pettifor, D.G., Vitek, V., Philos. Mag. A 77, 981 (1998).CrossRefGoogle Scholar
91.Znam, S., Nguyen-Manh, D., Pettifor, D.G., Vitek, V., Philos. Mag. A 83, 415 (2003).CrossRefGoogle Scholar
92.Vitek, V., Mrovec, M., Gröger, R., Bassani, J., Lacherla, V., Yin, L., Mater. Sci. Eng., A 387, 138 (2004).CrossRefGoogle Scholar
93.Vitek, V., Mrovec, M., Bassani, J.L., Mater. Sci. Eng., A 365, 31 (2004).CrossRefGoogle Scholar
94.Gröger, R., Bailey, A.G., Vitek, V., Acta Mater. 56, 5401 (2008).CrossRefGoogle Scholar
95.Gröger, R., Vitek, V., Acta Mater. 56, 5426 (2008).CrossRefGoogle Scholar
96.Cawkwell, M.J., Nguyen-Manh, D., Woodward, C., Pettifor, D.G., Vitek, V., Science 309, 1059 (2005).CrossRefGoogle Scholar
97.Katzarov, I.H., Paxton, A.T., Phys. Rev. Lett. 104, 225502 (2010).CrossRefGoogle Scholar
98.Mrovec, M., Nguyen-Manh, D., Elsässer, C., Gumbsch, P., Phys. Rev. Lett. 106, 246402 (2011).CrossRefGoogle Scholar
99.Ventelon, L., Willaime, F., Leyronnas, P., J. Nucl. Mater. 386, 26 (2009).CrossRefGoogle Scholar
100.Mikulski, P.T., Knippenberg, M.T., Harrison, J.A., J. Chem. Phys. 131, 241105 (2009).CrossRefGoogle Scholar
101.Albe, K., Nord, J., Nordlund, K., Philos. Mag. 89, 3477 (2009).CrossRefGoogle Scholar
102.Shan, T.-R., Devine, B.D., Hawkins, J.M., Asthagiri, A., Phillpot, S.R., Sinnott, S.B., Phys. Rev. B 82, 235302 (2010).CrossRefGoogle Scholar
103.Verstraelen, T., van Speybroeck, V., Waroquier, M., J. Chem. Phys. 131, 044127 (2009).CrossRefGoogle Scholar
104.Andersen, O.K., Jepsen, O., Phys. Rev. Lett. 53, 2571 (1984).CrossRefGoogle Scholar
105.Lu, W.C., Wang, C.Z., Chan, T.L., Ruedenberg, K., Ho, K.M., Phys. Rev. B 70, 041100 (2004).Google Scholar
106.Qian, X., Ju, L., Qi, L., Wang, C., Chan, T., Yao, Y., Ho, K., Yip, S., Phys. Rev. B 78, 245112 (2008).CrossRefGoogle Scholar
107.Nguyen-Manh, D., Pettifor, D.G., Cockayne, D.J.H., Mrovec, M., Znam, S., Vitek, V., Bull. Mater. Sci. 26, 43 (2003).CrossRefGoogle Scholar
108.Nguyen-Manh, D., Vitek, V., Horsfield, A.P., Prog. Mater. Sci. 52, 255 (2007).CrossRefGoogle Scholar
109.Urban, A., Reese, M., Mrovec, M., Elsässer, C., Meyer, B., Phys. Rev. B 84, 155119 (2011).CrossRefGoogle Scholar
110.Margine, E.R., Kolmogorov, A.N., Reese, M., Mrovec, M., Elsässer, C., Meyer, B., Drautz, R., Pettifor, D.G., Phys. Rev. B 84, 155120 (2011).CrossRefGoogle Scholar
111.Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G., Phys. Rev. Lett. 104, 136403 (2010).CrossRefGoogle Scholar