Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:42:07.378Z Has data issue: false hasContentIssue false

Biomaterial design motivated by characterization of natural extracellular matrices

Published online by Cambridge University Press:  10 January 2014

Catherine K. Kuo
Affiliation:
Department of Biomedical Engineering, Tufts University; catherinek.kuo@tufts.edu
Michael L. Smith
Affiliation:
Department of Biomedical Engineering, Boston University; msmith@bu.edu
Get access

Abstract

A growing trend in tissue engineering and regenerative medicine is to view cells, matrices, and whole tissues from a materials science perspective. The rationale behind this novel approach to considering biological problems is that the material properties at these different length scales both define their physical stability and also provide instructive cues. These cues can maintain homeostasis in healthy tissues or drive dynamic events during development, wound healing, and disease progression. However, one must map and characterize the physical properties of the natural extracellular matrix environment found in vivo in order to guide the design of synthetic or naturally derived materials to control cell function. This article reviews the study of natural tissues as materials, and sheds light on the use of this information to develop novel synthetic materials that guide cell function.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, C.S., Tan, J., Tien, J., Annu. Rev. Biomed. Eng. 6, 275 (2004).Google Scholar
Vogel, V., Sheetz, M., Nat. Rev. Mol. Cell Biol. 7 (4), 265 (2006).Google Scholar
Bradshaw, M.J., Smith, M.L., Acta Biomater. (2013), doi 10.1016/j.actbio.2013.08.027.Google Scholar
Kuo, C.K., Tuan, R.S., Tissue Eng. Part A 14 (10), 1615 (2008).Google Scholar
Discher, D.E., Mooney, D.J., Zandstra, P.W., Science 324 (5935), 1673 (2009).Google Scholar
Brown, J.P., Finley, V., Kuo, C.K., J. Biomech. (2013), accepted.Google Scholar
Schiele, N.R., Marturano, J.E., Kuo, C.K., Curr. Opin. Biotechnol. 24 (5), 834 (2013).Google Scholar
Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., Weaver, V.M., Cancer Cell 8 (3), 241 (2005).Google Scholar
Liu, J., Tan, Y., Zhang, H., Zhang, Y., Xu, P., Chen, J., Poh, Y.C., Tang, K., Wang, N., Huang, B., Nat. Mater. 11 (8), 734 (2012).Google Scholar
Dusseiller, M.R., Smith, M.L., Vogel, V., Textor, M., Biointerphases 1 (1), P1 (2006).CrossRefGoogle Scholar
Lauffenburger, D.A., Horwitz, A.F., Cell 84 (3), 359 (1996).Google Scholar
Koo, L.Y., Irvine, D.J., Mayes, A.M., Lauffenburger, D.A., Griffith, L.G., J. Cell Sci. 115 (7), 1423 (2002).Google Scholar
Plummer, S.T., Wang, Q., Bohn, P.W., Stockton, R., Schwartz, M.A., Langmuir 19 (18), 7528 (2003).Google Scholar
Watt, F.M., Jordan, P.W., O’Neill, C.H., Proc. Natl. Acad. Sci. U.S.A. 85 (15), 5576 (1988).CrossRefGoogle Scholar
Thery, M., Racine, V., Pepin, A., Piel, M., Chen, Y., Sibarita, J.B., Bornens, M., Nat. Cell Biol. 7 (10), 947 (2005).Google Scholar
McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S., Dev. Cell 6 (4), 483 (2004).Google Scholar
Ochsner, M., Textor, M., Vogel, V., Smith, M.L., PLoS One 5 (3), e9445 (2010).CrossRefGoogle Scholar
Discher, D.E., Janmey, P., Wang, Y.L., Science 310 (5751), 1139 (2005).CrossRefGoogle Scholar
Guthold, M., Liu, W., Sparks, E.A., Jawerth, L.M., Peng, L., Falvo, M., Superfine, R., Hantgan, R.R., Lord, S.T., Cell Biochem. Biophys. 49 (3), 165 (2007).Google Scholar
Liu, W., Jawerth, L.M., Sparks, E.A., Falvo, M.R., Hantgan, R.R., Superfine, R., Lord, S.T., Guthold, M., Science 313 (5787), 634 (2006).Google Scholar
George, E.L., Baldwin, H.S., Hynes, R.O., Blood 90 (8), 3073 (1997).Google Scholar
George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H., Hynes, R.O., Development 119 (4), 1079 (1993).CrossRefGoogle ScholarPubMed
Astrof, S., Hynes, R.O., Angiogenesis 12 (2), 165 (2009).Google Scholar
Banos, C.C., Thomas, A.H., Kuo, C.K., Birth Defects Res., Part C 84 (3), 228 (2008).CrossRefGoogle Scholar
Yang, L., Fitie, C.F., van der Werf, K.O., Bennink, M.L., Dijkstra, P.J., Feijen, J., Biomaterials 29 (8), 955 (2008).Google Scholar
Yang, L., van der Werf, K.O., Dijkstra, P.J., Feijen, J., Bennink, M.L., J. Mech. Behav. Biomed. Mater. 6, 148 (2012).Google Scholar
Yang, L., van der Werf, K.O., Fitie, C.F., Bennink, M.L., Dijkstra, P.J., Feijen, J., Biophys. J. 94 (6), 2204 (2008).Google Scholar
Shen, Z.L., Kahn, H., Ballarini, R., Eppell, S.J., Biophys. J. 100 (12), 3008 (2011).Google Scholar
Graham, J.S., Vomund, A.N., Phillips, C.L., Grandbois, M., Exp. Cell Res. 299 (2), 335 (2004).Google Scholar
Silver, F.H., Ebrahimi, A., Snowhill, P.B., Connect. Tissue Res. 43 (4), 569 (2002).Google Scholar
Silver, F.H., Freeman, J.W., Seehra, G.P., J. Biomech. 36 (10), 1529 (2003).Google Scholar
Buehler, M.J., Proc. Natl. Acad. Sci. U.S.A. 103 (33), 12285 (2006).Google Scholar
Buehler, M.J., J. Mech. Behav. Biomed. Mater. 1 (1), 59 (2008).Google Scholar
Ohashi, T., Kiehart, D.P., Erickson, H.P., Proc. Natl. Acad. Sci. U.S.A. 96 (5), 2153 (1999).Google Scholar
Ohashi, T., Kiehart, D.P., Erickson, H.P., J. Cell Sci. 115 (6), 1221 (2002).Google Scholar
Chabria, M., Hertig, S., Smith, M.L., Vogel, V., Nat. Commun. 1 (9), 135 (2010).Google Scholar
Little, W.C., Schwartlander, R., Smith, M.L., Gourdon, D., Vogel, V., Nano Lett. 9 (12), 4158 (2009).Google Scholar
Little, W.C., Smith, M.L., Ebneter, U., Vogel, V., Matrix Biol. 27 (5), 451 (2008).Google Scholar
Cao, L., Zeller, M.K., Fiore, V.F., Strane, P., Bermudez, H., Barker, T.H., Proc. Natl. Acad. Sci. U.S.A. 109 (19), 7251 (2012).Google Scholar
Liu, W., Bonin, K., Guthold, M., Rev. Sci. Instrum. 78 (6), 063707 (2007).Google Scholar
Carlisle, C.R., Coulais, C., Guthold, M., Acta Biomater. 6, 2997 (2010).CrossRefGoogle Scholar
Klotzsch, E., Smith, M.L., Kubow, K.E., Muntwyler, S., Little, W.C., Beyeler, F., Gourdon, D., Nelson, B.J., Vogel, V., Proc. Natl. Acad. Sci. U.S.A. 106 (43), 18267 (2009).Google Scholar
Isenberg, B.C., Dimilla, P.A., Walker, M., Kim, S., Wong, J.Y., Biophys. J. 97 (5), 1313 (2009).Google Scholar
Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L., Biophys. J. 79 (1), 144 (2000).CrossRefGoogle Scholar
Bradshaw, M.J., Cheung, M.C., Ehrlich, D.J., Smith, M.L., PLoS Comput. Biol. 8 (12), e1002845 (2012).Google Scholar
Bradshaw, M.J., Smith, M.L., Biophys. J. 101 (7), 1740 (2011).Google Scholar
Deravi, L.F., Su, T., Paten, J.A., Ruberti, J.W., Bertoldi, K., Parker, K.K., Nano Lett. 12 (11), 5587 (2012).Google Scholar
Salib, I.G., Kolmakov, G.V., Gnegy, C.N., Matyjaszewski, K., Balazs, A.C., Langmuir 27, 3991 (2011).Google Scholar
Peleg, O., Savin, T., Kolmakov, G.V., Salib, I.G., Balazs, A.C., Kroger, M., Vogel, V., Biophys. J. 103 (9), 1909 (2012).Google Scholar
Ruoslahti, E., Annu. Rev. Cell Dev. Biol. 12, 697 (1996).Google Scholar
Kubow, K.E., Klotzsch, E., Smith, M.L., Gourdon, D., Little, W.C., Vogel, V., Integr. Biol. 1 (11–12), 635 (2009).Google Scholar
Marturano, J.E., Arena, J.D., Schiller, Z.A., Georgakoudi, I., Kuo, C.K., Proc. Natl. Acad. Sci. U.S.A. 110 (16), 6370 (2013).Google Scholar
Marturano, J.E., Xylas, J.F., Sridharan, G.V., Georgakoudi, I., Kuo, C.K., Acta Biomater. 13, s1742 (2013).Google Scholar
Robins, S.P., Biochem. Soc. Trans. 35 (Pt. 5), 849 (2007).Google Scholar
Belkin, A.M., FEBS J. 278 (24), 4704 (2011).Google Scholar
Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., Oertle, P., Hyotyla, J.T., Aebi, U., Bentires-Alj, M., Lim, R.Y., Schoenenberger, C.A., Nat. Nanotechnol. 7 (11), 757 (2012).Google Scholar
Macpherson, I., Montagnier, L., Virology 23, 291 (1964).Google Scholar
Wan, A.M., Chandler, E.M., Madhavan, M., Infanger, D.W., Ober, C.K., Gourdon, D., Malliaras, G.G., Fischbach, C., Biochim. Biophys. Acta 1830 (9), 4314 (2013).Google Scholar
Kuo, C.K., Petersen, B.C., Tuan, R.S., Dev. Dyn. 237 (5), 1477 (2008).Google Scholar
Brown, J.P., Lind, R.M., Burzesi, A.F., Kuo, C.K., PLoS One 7 (6), e38475 (2012).Google Scholar
Pelham, R.J. Jr., Wang, Y., Proc. Natl. Acad. Sci. U.S.A. 94 (25), 13661 (1997).Google Scholar
Ochsner, M., Dusseiller, M.R., Grandin, H.M., Luna-Morris, S., Textor, M., Vogel, V., Smith, M.L., Lab Chip 7 (8), 1074 (2007).Google Scholar
Andreasson-Ochsner, M., Romano, G., Hakanson, M., Smith, M.L., Leckband, D.E., Textor, M., Reimhult, E., Lab Chip 11 (17), 2876 (2011).Google Scholar
Dusseiller, M.R., Schlaepfer, D., Koch, M., Kroschewski, R., Textor, M., Biomaterials 26 (29), 5917 (2005).Google Scholar
Leckband, D.E., le Duc, Q., Wang, N., de Rooij, J., Curr. Opin. Cell Biol. 23 (5), 523 (2011).Google Scholar
Burute, M., Thery, M., Curr. Opin. Cell Biol. 24 (5), 628 (2012).Google Scholar
Schwarz, U.S., Gardel, M.L., J. Cell Sci. 125 (13), 3051 (2012).Google Scholar
Ingber, D.E., FASEB J. 20 (7), 811 (2006).Google Scholar
Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Cell 126 (4), 677 (2006).Google Scholar
Kloxin, A.M., Benton, J.A., Anseth, K.S., Biomaterials 31 (1), 1 (2010).Google Scholar
Guvendiren, M., Burdick, J.A., Adv. Healthcare Mater. 2 (1), 155 (2013).Google Scholar
Lee, J., Abdeen, A.A., Zhang, D., Kilian, K.A., Biomaterials 34 (33), 8140 (2013).Google Scholar
Young, D.A., Choi, Y.S., Engler, A.J., Christman, K.L., Biomaterials 34 (34), 8581 (2013).Google Scholar
Trappmann, B., Gautrot, J.E., Connelly, J.T., Strange, D.G., Li, Y., Oyen, M.L., Cohen Stuart, M.A., Boehm, H., Li, B., Vogel, V., Spatz, J.P., Watt, F.M., Huck, W.T., Nat. Mater. 11 (7), 642 (2012).Google Scholar
Sharma, R.I., Snedeker, J.G., PLoS One 7 (2), e31504 (2012).Google Scholar
Rowlands, A.S., George, P.A., Cooper-White, J.J., Cell Physiol. 295 (4), C1037 (2008).Google Scholar
Hudalla, G.A., Kouris, N.A., Koepsel, J.T., Ogle, B.M., Murphy, W.L., Integr. Biol. 3 (8), 832 (2011).Google Scholar
Klim, J.R., Li, L., Wrighton, P.J., Piekarczyk, M.S., Kiessling, L.L., Nat. Methods 7 (12), 989 (2010).CrossRefGoogle Scholar
Li, G.N., Livi, L.L., Gourd, C.M., Deweerd, E.S., Hoffman-Kim, D., Tissue Eng. 13 (5), 1035 (2007).Google Scholar
Petersen, O.W., Ronnov-Jessen, L., Howlett, A.R., Bissell, M.J., Proc. Natl. Acad. Sci. U.S.A. 89 (19), 9064 (1992).Google Scholar
Walpita, D., Hay, E., Nat. Rev. Mol. Cell Biol. 3 (2), 137 (2002).Google Scholar
Roy, P., Petroll, W.M., Chuong, C.J., Cavanagh, H.D., Jester, J.V., Ann. Biomed. Eng. 27 (6), 721 (1999).Google Scholar
Hay, E.D., Curr. Opin. Cell Biol. 5 (6), 1029 (1993).Google Scholar
Kim, I.L., Khetan, S., Baker, B.M., Chen, C.S., Burdick, J.A., Biomaterials 34 (22), 5571 (2013).Google Scholar
Huebsch, N., Arany, P.R., Mao, A.S., Shvartsman, D., Ali, O.A., Bencherif, S.A., Rivera-Feliciano, J., Mooney, D.J., Nat. Mater. 9 (6), 518 (2010).Google Scholar
Parekh, A., Ruppender, N.S., Branch, K.M., Sewell-Loftin, M.K., Lin, J., Boyer, P.D., Candiello, J.E., Merryman, W.D., Guelcher, S.A., Weaver, A.M., Biophys. J. 100 (3), 573 (2011).Google Scholar
Nii, M., Lai, J.H., Keeney, M., Han, L.H., Behn, A., Imanbayev, G., Yang, F., Acta Biomater. 9 (3), 5475 (2013).Google Scholar
Lutolf, M.P., Hubbell, J.A., Nat. Biotechnol. 23 (1), 47 (2005).Google Scholar
DeVolder, R., Kong, H.J., Wiley Interdiscip. Rev. Syst. Biol. Med. 4 (4), 351 (2012).Google Scholar
Kuo, C.K., Ma, P.X., Biomaterials 22 (6), 511 (2001).Google Scholar