Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:42:01.803Z Has data issue: false hasContentIssue false

Atomic resolution electron tomography

Published online by Cambridge University Press:  07 July 2016

Sara Bals
Affiliation:
Electron Microscopy for Materials Research Laboratory, University of Antwerp, Belgium; sara.bals@uantwerpen.be
Bart Goris
Affiliation:
Electron Microscopy for Materials Research Laboratory, University of Antwerp, Belgium; bart.goris@uantwerpen.be
Annick De Backer
Affiliation:
Electron Microscopy for Materials Research Laboratory, University of Antwerp, Belgium; annick.debacker@uantwerpen.be
Sandra Van Aert
Affiliation:
Electron Microscopy for Materials Research Laboratory, University of Antwerp, Belgium; sandra.vanaert@uantwerpen.be
Gustaaf Van Tendeloo
Affiliation:
Electron Microscopy for Materials Research Laboratory, University of Antwerp, Belgium; staf.vantendeloo@uantwerpen.be
Get access

Abstract

Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano)materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., Urban, K., Ultramicroscopy 75, 53 (1998).Google Scholar
Kabius, B., Haider, M., Uhlemann, S., Schwan, E., Urban, K., Rose, H., J. Electron Microsc. 51, S51 (2002).CrossRefGoogle Scholar
Batson, P.E., Dellby, N., Krivanek, O.L., Nature 418, 617 (2002).CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Kisielowski, C., Dahmen, U., Phys. Rev. Lett. 102, 096101 (2009).Google Scholar
Midgley, P.A., Dunin-Borkowski, R.E., Nat. Mater. 8, 271 (2009).Google Scholar
Midgley, P.A., Weyland, M., Ultramicroscopy 96, 413 (2003).CrossRefGoogle Scholar
Grzelczak, M., Perez-Juste, J., Mulvaney, P., Liz-Marzan, L.M., Chem. Soc. Rev. 37, 1783 (2008).CrossRefGoogle Scholar
Valden, M., Lai, X., Goodman, D.W., Science 281, 1647 (1998).CrossRefGoogle Scholar
Goubet, N., Yan, C., Polli, D., Portales, H., Arfaoui, I., Cerullo, G., Pileni, M.P., Nano Lett. 13, 504 (2013).Google Scholar
Louis, C., Pluchery, O., Gold Nanoparticles for Physics, Chemistry and Biology (Imperial College Press, London, 2012).CrossRefGoogle Scholar
Li, Z.Y., Young, N.P., Di Vece, M., Palomba, S., Palmer, R.E., Bleloch, A.L., Curley, B.C., Johnston, R.L., Jiang, J., Yuan, J., Nature 451, 46 (2008).Google Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G., Nature 470, 374 (2011).Google Scholar
Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Kilaas, R., Radmilovic, V., Kisielowski, C., Ultramicroscopy 108, 589 (2008).Google Scholar
Batenburg, K.J., Bals, S., Sijbers, J., Kubel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A., Van Tendeloo, G., Ultramicroscopy 109, 730 (2009).Google Scholar
Bals, S., Casavola, M., van Huis, M.A., Van Aert, S., Batenburg, K.J., Van Tendeloo, G., Vanmaekelbergh, D., Nano Lett. 11, 3420 (2011).Google Scholar
Bar Sadan, M., Houben, L., Wolf, S.G., Enyashin, A., Seifert, G., Tenne, R., Urban, K., Nano Lett. 8, 891 (2008).Google Scholar
Scott, M.C., Chen, C.C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C., Miao, J.W., Nature 483, 444 (2012).Google Scholar
Miao, J.W., Forster, F., Levi, O., Phys. Rev. B Condens. Matter 72, 052103 (2005).Google Scholar
Chen, C.C., Zhu, C., White, E.R., Chiu, C.Y., Scott, M.C., Regan, B.C., Marks, L.D., Huang, Y., Miao, J.W., Nature 496, 74 (2013).Google Scholar
Goris, B., Bals, S., Van den Broek, W., Carbo-Argibay, E., Gomez-Grana, S., Liz-Marzan, L.M., Van Tendeloo, G., Nat. Mater. 11, 930 (2012).Google Scholar
Hytch, M.J., Snoeck, E., Kilaas, R., Ultramicroscopy 74, 131 (1998).Google Scholar
Goris, B., De Backer, A., Van Aert, S., Gomez-Grana, S., Liz-Marzan, L.M., Van Tendeloo, G., Bals, S., Nano Lett. 13, 4236 (2013).Google Scholar
Haberfehlner, G., Thaler, P., Knez, D., Volk, A., Hofer, F., Ernst, W.E., Kothleitner, G., Nat. Commun. 6, 8779 (2015).CrossRefGoogle Scholar
Xu, R., Chen, C.C., Wu, L., Scott, M.C., Theis, W., Ophus, C., Bartels, M., Yang, Y., Ramezani-Dakhel, H., Sawaya, M.R., Heinz, H., Marks, L.D., Ercius, P., Miao, J.W., Nat. Mater. 14, 1099 (2015).CrossRefGoogle Scholar
Johnson, C.L., Snoeck, E., Ezcurdia, M., Rodriguez-Gonzalez, B., Pastoriza-Santos, I., Liz-Marzan, L.M., Hytch, M.J., Nat. Mater. 7, 120 (2008).CrossRefGoogle Scholar
Walsh, M.J., Yoshida, K., Kuwabara, A., Pay, M.L., Gai, P.L., Boyes, E.D., Nano Lett. 12, 2027 (2012).CrossRefGoogle Scholar
Goris, B., De Beenhouwer, J., De Backer, A., Zanaga, D., Batenburg, K.J., Sanchez-Iglesias, A., Liz-Marzan, L.M., Van Aert, S., Bals, S., Sijbers, J., Van Tendeloo, G., Nano Lett. 15, 6996 (2015).CrossRefGoogle Scholar
Zanaga, D., Bleichrodt, F., Altantzis, T., Winckelmans, N., Palenstijn, W.J., Sijbers, J., de Nijs, B., van Huis, M.A., Sanchez-Iglesias, A., Liz-Marzan, L.M., van Blaaderen, A., Batenburg, K.J., Bals, S., Van Tendeloo, G., Nanoscale 8, 292 (2016).Google Scholar
Galindo, P.L., Kret, S., Sanchez, A.M., Laval, J.Y., Yanez, A., Pizarro, J., Guerrero, E., Ben, T., Molina, S.I., Ultramicroscopy 107, 1186 (2007).Google Scholar
Van Aert, S., De Backer, A., Martinez, G.T., Goris, B., Bals, S., Van Tendeloo, G., Rosenauer, A., Phys. Rev. B Condens. Matter 87, 064107 (2013).Google Scholar
Bals, S., Van Aert, S., Romero, C.P., Lauwaet, K., Van Bael, M.J., Schoeters, B.B., Partoens, B., Yucelen, E., Lievens, P., Van Tendeloo, G., Nat. Commun. 3, 897 (2012).Google Scholar
Jones, L., MacArthur, K.E., Fauske, V.T., van Helvoort, A.T.J., Nellist, P.D., Nano Lett. 14, 6336 (2014).Google Scholar
Jia, C.L., Mi, S.B., Barthel, J., Wang, D.W., Dunin-Borkowski, R.E., Urban, K.W., Thust, A., Nat. Mater. 13, 1044 (2014).Google Scholar
Van Dyck, D., Jinschek, J.R., Chen, F.R., Nature 489, 460 (2012).Google Scholar
Chang, L.Y., Barnard, A.S., Gontard, L.C., Dunin-Borkowski, R.E., Nano Lett. 10, 3073 (2010).Google Scholar