Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:29:58.977Z Has data issue: false hasContentIssue false

Amides and borohydrides for high-capacity solid-state hydrogen storage—materials design and kinetic improvements

Published online by Cambridge University Press:  07 June 2013

Jianhui Wang
Affiliation:
International Research Center for Hydrogen Energy, Kyushu University, Fukuoka, Japan; well.wjh@gmail.com
Hai-Wen Li
Affiliation:
International Research Center for Hydrogen Energy, Kyushu University, Fukuoka, Japan; li.haiwen.305@m.kyushu-u.ac.jp
Ping Chen
Affiliation:
Dalian National Laboratories for Clean Energy, Dalian Institute of Chemical Physics, Dalian, China; pchen@dicp.ac.cn
Get access

Abstract

The development of safe, efficient, and economic hydrogen storage technologies is key for implementation of a hydrogen-based energy economy. In the search for high-hydrogen content materials, attention in the past decade has shifted to amides and borohydrides, two representative solid-state chemical sorption materials with high hydrogen capacities that had not been previously explored for hydrogen storage. A large number of new amide and borohydride systems have recently been developed that expand the material scope for hydrogen storage. This article reviews the current progress in amides and borohydrides with emphases on material design and kinetic improvement.

Type
Metal hydrides for clean energy applications
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schlapbach, L., Züttel, A., Nature 414, 353 (2001).CrossRefGoogle Scholar
Orimo, S., Nakamori, Y., Eliseo, J.R., Züttel, A., Jensen, C.M., Chem. Rev. 107, 4111 (2007).CrossRefGoogle Scholar
Eberle, U., Felderhoff, M., Schüth, F., Angew. Chem. Int. Ed. 48, 6608 (2009).CrossRefGoogle Scholar
Mandal, T.K., Gregory, D.H., Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 105, 21 (2009).CrossRefGoogle Scholar
Chen, P., Xiong, Z.T., Luo, J.Z., Li, J.Y., Tan, K.L., Nature 420, 302 (2002).CrossRefGoogle Scholar
Grochala, W., Edwards, P.P., Chem. Rev. 104, 1283 (2004).CrossRefGoogle Scholar
Veleckis, E., J. Nucl. Mater. 79, 20 (1979).CrossRefGoogle Scholar
Xiong, Z.T., Wu, G.T., Hu, J.J., Chen, P., Adv. Mater. 16, 1522 (2004).CrossRefGoogle Scholar
Luo, W.F., J. Alloys Compd. 381, 284 (2004).CrossRefGoogle Scholar
Leng, H.Y., Ichikawa, T., Fujii, H., J. Phys. Chem. B 110, 12964 (2006).CrossRefGoogle Scholar
Pinkerton, F.E., Meisner, G.P., Meyer, M.S., Balogh, M.P., Kundrat, M.D., J. Phys. Chem. B 109, 6 (2005).CrossRefGoogle Scholar
Aoki, M., Miwa, K., Noritake, T., Kitahara, G., Nakamori, Y., Orimo, S., Towata, S., Appl. Phys. A 80, 1409 (2005).CrossRefGoogle Scholar
Kojima, Y., Matsumoto, M., Kawai, Y., Haga, T., Ohba, N., Miwa, K., Towata, S., Nakamori, Y., Orimo, S., J. Phys. Chem. B 110, 9632 (2006).CrossRefGoogle Scholar
Yang, J., Sudik, A., Siegel, D.J., Halliday, D., Drews, A., Carter, R.O. III, Wolverton, C., Lewis, G.J., Sachtler, J.W.A., Low, J.J., Faheem, S.A., Lesch, D.A., Ozolins, V., J. Alloys Compd. 446447, 345 (2007).CrossRefGoogle Scholar
Soloveichik, G., Her, J., Stephens, P.W., Gao, Y., Rijssenbeek, J., Andrus, M., Zhao, J.C., Inorg. Chem. 47, 4290 (2008).CrossRefGoogle Scholar
Wang, J.H., Liu, T., Wu, G.T., Li, W., Liu, Y.F., Araujo, C.M., Scheicher, R.H., Blomqvist, A., Ahuja, R., Xiong, Z.T., Yang, P., Gao, M.X., Pan, H.G., Chen, P., Angew. Chem. 121, 5942 (2009); Angew. Chem. Int. Ed. 48, 5828 (2009).CrossRefGoogle Scholar
Guo, Y.H., Yu, X.B., Sun, W.W., Sun, D.L., Yang, W.N., Angew. Chem. Int. Ed. 50, 1087 (2011).CrossRefGoogle Scholar
Zheng, X.L., Wu, G.T., Li, W., Xiong, Z.T., He, T., Guo, J.P., Chen, H., Chen, P., Energy Environ. Sci. 4, 3593 (2011).CrossRefGoogle Scholar
He, T., Wu, H., Wu, G.T., Wang, J.H., Zhou, W., Xiong, Z.T., Chen, J.E., Zhang, T., Chen, P., Energy Environ. Sci. 5, 5686 (2012).CrossRefGoogle Scholar
Xiong, Z.T., Hu, J.J., Wu, G.T., Chen, P., Luo, W.F., Gross, K., Wang, J., J. Alloys Compd. 398, 235 (2005).CrossRefGoogle Scholar
Vajo, J.J., Mertens, F., Ahn, C.C., Bowman, R.C., Fultz, B., J. Phys. Chem. B 108, 13977 (2004).CrossRefGoogle Scholar
Gosalawit-Utke, R., Colbe, J., Gornheim, M., Jensen, T.R., Cerenius, Y., Bonatto, C.M., Peschke, M., Bormann, R., J. Phys. Chem. C 114, 10291 (2010).CrossRefGoogle Scholar
Sørby, M.H., Nakamura, Y., Brinks, H.W., Ichikawa, T., Hino, S., Fujii, H., Hauback, B.C., J. Alloys Compd. 428, 297 (2007).CrossRefGoogle Scholar
Balogh, M.P., Jones, C.Y., Herbst, J.F., Hector, L.G. Jr., Kundrat, M., J. Alloys Compd. 420, 326 (2006).CrossRefGoogle Scholar
Rijssenbeek, J., Gao, Y., Hanson, J., Hunag, Q.Z., Jones, C., Toby, B., J. Alloys Compd. 454, 233 (2008).CrossRefGoogle Scholar
Wang, Y., Chou, M.Y., Phys. Rev. B 76, 014116 (2007).CrossRefGoogle Scholar
Noritake, T., Aoki, M., Matsumoto, M., Miwa, K., Towata, S., Li, H.W., Orimo, S., J. Alloys Compd. 509, 7553 (2011).CrossRefGoogle Scholar
David, W.I.F., Jones, M.O., Gregory, D.H., Jewell, C.M., Johnson, S.R., Walton, A., Edwards, P.P., J. Am. Chem. Soc. 129, 1594 (2007).CrossRefGoogle Scholar
Hu, Y.H., Ruckenstein, E., J. Phys. Chem. A 107, 9737 (2003).CrossRefGoogle Scholar
Ichikawa, T., Hanada, N., Isobe, S., Leng, H.Y., Fujii, H., J. Phys. Chem. B 108, 7887 (2004).CrossRefGoogle Scholar
Chen, P., Xiong, Z.T., Yang, L.F., Wu, G.T., Luo, W.F., J. Phys. Chem. B 110, 14221 (2006).CrossRefGoogle Scholar
Wu, H., J. Am. Chem. Soc. 130, 6515 (2008).CrossRefGoogle Scholar
Aguey-Zinsou, K.F., Yao, J.H., Guo, Z.X., J. Phys. Chem. B 111, 12531 (2007).CrossRefGoogle Scholar
Shaw, L.L., Ren, R., Markmaitree, T., Osborn, W., J. Alloys Compd. 448, 263 (2008).CrossRefGoogle Scholar
Liu, Y.F., Zhong, K., Luo, K., Gao, M.X., Pan, H.G., Wang, Q.D., J. Am. Chem. Soc. 131, 1862 (2009).CrossRefGoogle Scholar
Wang, J.H., Hu, J.J., Liu, Y.F., Xiong, Z.T., Wu, G.T., Pan, H.G., Chen, P., J. Mater. Chem. 19, 2141 (2009).CrossRefGoogle Scholar
Demir-Cakan, R., Tang, W.S., Darwiche, A., Janot, R., Energy Environ. Sci. 4, 3625 (2011).CrossRefGoogle Scholar
Menjo, M., Hyodo, Y., Moriyama, S., Li, H.W., Matsuo, M., Semboshi, S., Orimo, S., Mater. Trans. 52, 623 (2011).CrossRefGoogle Scholar
Bogdanović, B., Schwickardi, M., J. Alloys Compd. 253254, 1 (1997).CrossRefGoogle Scholar
Barkhordarian, G., Klassen, T., Bormann, R., J. Alloys Compd. 364, 242 (2004).CrossRefGoogle Scholar
Pinkerton, F.E., Meyer, M.S., Meisner, G.P., Balogh, M.P., J. Alloys Compd. 433, 282 (2007).CrossRefGoogle Scholar
Ichikawa, T., Isobe, S., Hanada, N., Fujii, H., J. Alloys Compd. 365, 271 (2004).CrossRefGoogle Scholar
Lohstroh, W., Fichtner, M., J. Alloys Compd. 446-447, 332 (2007).CrossRefGoogle Scholar
Yao, J.H., Shang, C., Aguey-Zinsou, K.F., Guo, Z.X., J. Alloys Compd. 432, 277 (2007).CrossRefGoogle Scholar
Lewis, G.J., Sachtler, J.W.A., Low, J.J., Lesch, D.A., Faheem, S.A., Dosek, P.M., Knight, L.M., Halloran, L., Jensen, C.M., Yang, J., Sudik, A., Siegel, D.J., Wolverton, C., Ozolins, V., Zhang, S., J. Alloys Compd. 446447, 355 (2007).CrossRefGoogle Scholar
Hu, J.J., Liu, Y.F., Wu, G.T., Xiong, Z.T., Chua, Y.S., Chen, P., Chem. Mater. 20, 4398 (2008).CrossRefGoogle Scholar
Anderson, P.A., Chater, P.A., Hewett, D.R., Slater, P.R., Faraday Discuss. 151, 271 (2011).CrossRefGoogle Scholar
Wang, J.H., Wu, G.T., Shen, C.Y., Guo, J.P., Xiong, Z.T., Zhang, Y., Gao, M.X., Pan, H.G., Chen, P., ChemSusChem 4, 1622 (2011).CrossRefGoogle Scholar
Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, P., Emmenegger, Ch., J. Power Sources 118, 1 (2003).CrossRefGoogle Scholar
Orimo, S., Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Towata, S., Züttel, A., J. Alloys Compd. 404, 427 (2005).CrossRefGoogle Scholar
Li, H.-W., Kikuchi, K., Nakamori, Y., Miwa, K., Towata, S., Orimo, S., Scripta Mater. 57, 679 (2007).CrossRefGoogle Scholar
Li, H.-W., Kikuchi, K., Nakamori, Y., Ohba, N., Miwa, K., Towata, S., Orimo, S., Acta Mater. 56, 1342 (2008).CrossRefGoogle Scholar
Hanada, N., Chopek, K., Frommen, C., Lohstroh, W., Fichtner, M., J. Mater. Chem. 18, 2611 (2008).CrossRefGoogle Scholar
Soloveichik, G.L., Gao, Y., Rijssenbeek, J., Andrus, M., Kniajanski, S., Bowman, R.C., Hwang, S.-J., Zhao, J.-C., Int. J. Hydrogen Energy 34, 916 (2009).CrossRefGoogle Scholar
Rönnebro, E., Majzoub, E.H., J. Phys. Chem. B 111, 12045 (2007).CrossRefGoogle Scholar
Aoki, M., Miwa, K., Noritake, T., Ohba, N., Matsumoto, M., Li, H.-W., Nakamori, Y., Towata, S., Orimo, S., Appl. Phys. A 92, 601 (2008).CrossRefGoogle Scholar
Kim, J.-H., Jin, S.-A., Shim, J.-H., Cho, Y.W., Scripta Mater. 58, 481 (2008).CrossRefGoogle Scholar
Chen, P., Zhu, M., Mater. Today 11, 36 (2008).CrossRefGoogle Scholar
Yang, J., Sudik, A., Wolverton, C., Siegel, D.J., Chem. Soc. Rev. 39, 656 (2010).CrossRefGoogle Scholar
Rönnebro, E., Curr. Opin. Solid State Mater. Sci. 15, 44 (2011).CrossRefGoogle Scholar
Reed, D., Book, D., Curr. Opin. Solid State Mater. Sci. 15, 62 (2011).CrossRefGoogle Scholar
Li, H.-W., Yan, Y., Orimo, S., Züttel, A., Jensen, C.M., Energies 4, 185 (2011).CrossRefGoogle Scholar
Rude, L.H., Nielsen, T.K., Ravnsbæk, D.B., Bösenberg, U., Ley, M.B., Richter, B., Arnbjerg, L.M., Dornheim, M., Filinchuk, Y., Besenbacher, F., Jensen, T.R., Phys. Status Solidi A 208, 1754 (2011).CrossRefGoogle Scholar
Li, H.-W., Miwa, K., Ohba, N., Fujita, T., Sato, T., Yan, Y., Towata, S., Chen, M.W., Orimo, S., Nanotechnology 20, 204013 (2009).CrossRefGoogle Scholar
Hwang, S.-J., Bowman, R.C., Reiter, J.W., Rijssenbeek, J., Soloverchik, G.L., Zhao, J.-C., Kabbour, H., Ahn, C.C., J. Phys. Chem. C 112, 3164 (2008).CrossRefGoogle Scholar
Ozolin, V., Majzoub, E.H., Wolverton, C., J. Am. Chem. Soc. 131, 230 (2009).CrossRefGoogle Scholar
Orimo, S., Nakamori, Y., Ohba, N., Miwa, K., Aoki, M., Miwa, S., Züttel, A., Appl. Phys. Lett. 89, 021920 (2006).CrossRefGoogle Scholar
Friedrichs, O., Remhof, A., Hwang, S.-J., Züttel, A., Chem. Mater. 22, 3265 (2009).CrossRefGoogle Scholar
Wang, L.L., Graham, D.D., Robertson, I.M., Johnson, D.D., J. Phys. Chem. C 113, 20088 (2009).CrossRefGoogle Scholar
Chong, M., Karkamkar, A., Autrey, T., Orimo, S., Jalisatgi, S., Jensen, C.M., Chem. Commun. 47, 1330 (2011).CrossRefGoogle Scholar
Severa, G., Rönnebro, E., Jensen, C., Chem. Commun. 46, 421 (2010).CrossRefGoogle Scholar
Nakamori, Y., Miwa, K., Ninoyiya, A., Li, H.-W., Ohba, N., Towata, S., Züttel, A., Orimo, S., Phys. Rev. B 74, 045126 (2006).CrossRefGoogle Scholar
Li, H.-W., Orimo, S., Nakamori, Y., Miwa, K., Ohba, N., Towata, S., Züttel, A., J. Alloys Compd. 446447, 315 (2007).CrossRefGoogle Scholar
Nickels, E.A., Jones, M.O., David, W.I.F., Johnson, S.R., Lowton, R.L., Sommariva, M., Edwards, P.P., Angew. Chem. Int. Ed. 47, 2817 (2008).CrossRefGoogle Scholar
Hagemann, H., Longhini, M., Kaminski, J.W., Wesolowski, T.A., Černý, R., Penin, N., Sørby, M.H., Hauback, B.C., Severa, G., Jensen, C.M., J. Phys. Chem. A 112, 7551 (2008).CrossRefGoogle Scholar
Černý, R., Penin, N., d’Anna, V., Ruziska, J., Acta Mater. 59, 5171 (2011).CrossRefGoogle Scholar
Vajo, J.J., Olson, G.L., Scripta Mater. 56, 829 (2007).CrossRefGoogle Scholar
Vajo, J.J., Skeith, S.L., Mertens, F., J. Phys. Chem. B 109, 3719 (2005).CrossRefGoogle Scholar
Bösenberg, U., Doppiu, S., Mosegaard, L., Barkhordarian, G., Eigen, N., Borgschulte, A., Jensen, T.R., Cerenius, Y., Gutfleisch, O., Klassen, T., Dornheim, M., Bormann, R., Acta Mater. 55, 3951 (2007).CrossRefGoogle Scholar
Pinkerton, F.E., Meyer, M.S., Meisner, G.P., Balogh, M.P., Vajo, J.J., J. Phys. Chem. C 111, 12881 (2007).CrossRefGoogle Scholar
Price, T.E.C., Grant, D.M., Weston, D., Hansen, T., Arnbjerg, L.M., Ravnsbæk, D.B., Jensen, T.R., Walker, G.S., J. Am. Chem. Soc. 133, 13534 (2011).CrossRefGoogle Scholar
Shim, J.-H., Lim, J.-H., Rather, S.-U., Lee, Y.-S., Reed, D., Kim, Y., Book, D., Cho, Y.W., J. Phys. Chem. Lett. 1, 59 (2010).CrossRefGoogle Scholar
Jin, S.-A., Lee, Y.-S., Shim, J.-H., Cho, Y.W., J. Phys. Chem. C 112, 9520 (2008).CrossRefGoogle Scholar
Au, M., Jurgensen, A., Zeigler, K., J. Phys. Chem. B 110, 26482 (2006).CrossRefGoogle Scholar
Bösenberg, U., Kim, J.W., Gosslar, D., Eigen, N., Jensen, T.R., Bellosta von Colbe, J.M., Zhou, Y., Dahms, M., Kim, D.H., Günther, R., Cho, Y.W., Oh, K.H., Klassen, T., Bormann, R., Dornheim, M., Acta Mater. 58, 3381 (2010).CrossRefGoogle Scholar
Gross, A.F., Vajo, J.J., van Atta, S.L., Olson, G.L., J. Phys. Chem. C 112, 5651 (2008).CrossRefGoogle Scholar
Liu, X., Peaslee, D., Jost, C.Z., Baumann, T.F., Majzoub, E.H., Chem. Mater. 23, 1331 (2011).CrossRefGoogle Scholar
Fultz, B., Prog. Mater. Sci. 61, 247 (2010).CrossRefGoogle Scholar