Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T02:09:33.011Z Has data issue: false hasContentIssue false

Toward more environmentally friendly routes to high purity ionic liquids

Published online by Cambridge University Press:  15 July 2013

S. Passerini
Affiliation:
University of Münster, Germany;stefano.passerini@uni-muenster.de
G.B. Appetecchi
Affiliation:
University of Rome Sapienza, Italy;gianni.appetecchi@enea.it
Get access

Abstract

Ionic liquids (ILs) are a very interesting new class of fluid materials because of their unique characteristics, such as wide chemical, thermal, and electrochemical stability, high ion conduction, non-detectable vapor pressure, nonflammability, and good-to-excellent capability to dissolve inorganic, organic, and polymer compounds. ILs are proposed for a very wide variety of applications, including electrochemical devices. However, high purity ILs, particularly for high-energy electrochemical applications, are not widely available commercially. In addition, solvent restriction and environmental impact, as well as the possibility to fully recycle chemicals and reagents, represent the most stringent requirements for the future synthesis processes of ILs. This article reviews synthesis route improvements in terms of environment impact solvents, chemical recycling and cost, and process yield for obtaining high purity (below 50 ppm) ILs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wasserscheid, P., Keim, W., Angew. Chem. Int. Ed. 39, 372 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
Rogers, J.R.D., Seddon, K.R., Ionic Liquids: Industrial Application to Green Chemistry (ACS Symposium Series 818) (American Chemical Society, Washington, 2002).CrossRefGoogle Scholar
Earle, M.J., Seddon, K.R., Pure Appl. Chem. 72, 1391 (2000).CrossRefGoogle Scholar
Anderson, J.L., Ding, J., Welton, T., Armstrong, D.W., J. Am. Chem. Soc. 124, 14247 (2002).CrossRefGoogle Scholar
Dupont, J., de Souza, R.F., Suarez, P.A.Z., Chem. Rev. 102, 3667 (2002).CrossRefGoogle Scholar
Jin, C.-M., Ye, C., Phillips, B.S., Zabinski, J.S., Liu, X., Liu, W., Shreeve, J.M., J. Mater. Chem. 16, 1529 (2006).CrossRefGoogle Scholar
Van Valkenburg, M.E., Vaughn, R.L., Williams, M., Wilkes, J.S., Thermochim. Acta 425, 181 (2005).CrossRefGoogle Scholar
Wu, B., Reddy, R.G., Rogers, R.D., Proceedings of Solar Forum 2001 Solar Energy: The Power to Choose, April 21–25, 2001, Washington, DC.Google Scholar
Bhatt, A.I., May, I., Volkovich, V.A., Hetherington, M.E., Lewin, B., Thied, R.C., Ertok, N., J. Chem. Soc., Dalton Trans. 24, 4532 (2002).CrossRefGoogle Scholar
Panozzo, S., Armand, M., Stephan, O., Appl. Phys. Lett. 80, 679 (2002).CrossRefGoogle Scholar
Wang, P., Zakeeruddin, S.M., Exnar, I., Gratzel, M., Chem. Commun. 22, 2972 (2002).CrossRefGoogle Scholar
Fuller, J., Breda, A.C., Carlin, R.T., J. Electroanal. Chem. 459, 29 (1998).CrossRefGoogle Scholar
Nakagawa, H., Izuchi, S., Kunawa, K., Nukuda, T., Aihara, Y., J. Electrochem. Soc. 150, A695 (2003).CrossRefGoogle Scholar
Sakaebe, H., Matsumoto, H., Electrochem. Commun. 5, 594 (2003).CrossRefGoogle Scholar
Noda, A., Susan, M.A.B.H., Kudo, K., Mitsushima, S., Hayamizu, K., Watanabe, M., J. Phys. Chem. B 107, 4024 (2003).CrossRefGoogle Scholar
Balducci, A., Dugas, R., Taberna, P.L., Simon, P., Plée, D., Mastragostino, M., Passerini, S., J. Power Sources 20, 922 (2007).CrossRefGoogle Scholar
Kim, G.-T., Appetecchi, G.B., Montanino, M., Alessandrini, F., Passerini, S., ECS Trans. 25, 127 (2010).CrossRefGoogle Scholar
Appetecchi, G.B., Montanino, M., Balducci, A., Lux, S.F., Winter, M., Passerini, S., J. Power Sources 192, 599 (2009).CrossRefGoogle Scholar
Lux, S.F., Schmuck, M., Appetecchi, G.B., Passerini, S., Winter, M., Balducci, A., J. Power Sources 192, 606 (2009).CrossRefGoogle Scholar
Guerfi, A., Duchesne, S., Kobayashi, Y., Vijh, A., Zaghib, K., J. Power Sources 175, 866 (2008).CrossRefGoogle Scholar
Sugimoto, T., Atsumi, Y., Kikuta, M., Ishiko, E., Kono, M., Ishikawa, M., J. Power Sources 189, 802 (2009).CrossRefGoogle Scholar
Matsumoto, H., Sakaebe, H., Tatsumi, K., Kikuta, M., Ishiko, E., Kono, M., J. Power Sources 160, 1308 (2006).CrossRefGoogle Scholar
Kim, G.T., Jeong, S.S., Joost, M., Rocca, E., Winter, M., Passerini, S., Balducci, A., J. Power Sources 195, 6130 (2010).CrossRefGoogle Scholar
Lux, S.F., Schappacher, F., Balducci, A., Passerini, S., Winter, M., J. Electrochem. Soc. 157, A320 (2010).CrossRefGoogle Scholar
Kim, G.-T., Jeong, S.S., Xue, M.-Z., Balducci, A., Winter, M., Passerini, S., Alessandrini, F., Appetecchi, G.B., J. Power Sources 199, 239 (2012).CrossRefGoogle Scholar
Shin, J.-H., Henderson, W.A., Appetecchi, G.B., Alessandrini, F., Passerini, S., Electrochim. Acta 50, 3859 (2005).CrossRefGoogle Scholar
Kim, G.-T., Appetecchi, G.B., Alessandrini, F., Passerini, S., J. Power Sources 171, 861 (2007).CrossRefGoogle Scholar
Appetecchi, G.B., Kim, G.T., Montanino, M., Alessandrini, F., Passerini, S., J. Power Sources 196, 6703 (2011).CrossRefGoogle Scholar
Wasserscheid, P., Welton, T., Ionic Liquid in Synthesis (VCH-Wiley, Weinheim, 2002).CrossRefGoogle Scholar
Welton, T., Chem. Rev. 99, 2071 (1999).CrossRefGoogle Scholar
MacFarlane, D.R., Meakin, P., Sun, J., Amini, N., Forsyth, M., J. Phys. Chem. B 103, 4164 (1999).CrossRefGoogle Scholar
Henderson, W.H., Passerini, S., Chem. Mater. 16 (15), 2881 (2004).CrossRefGoogle Scholar
Appetecchi, G.B., Scaccia, S., Tizzani, C., Alessandrini, F., Passerini, S., J. Electrochem. Soc. 153 (9), A1685 (2006).CrossRefGoogle Scholar
Fernicola, A., Croce, F., Scrosati, B., Watanabe, T., Ohno, H., J. Power Sources 174, 342 (2007).CrossRefGoogle Scholar
Arco, S.D., Laxamana, R.T., Giron, O.D., Obliosca, J.M., Philipp. J. Sci. 138 (2), 133 (2009).Google Scholar
Appetecchi, G.B., Montanino, M., Carewska, M., Moreno, M., Alessandrini, F., Passerini, S., Electrochim. Acta 56, 1300 (2011).CrossRefGoogle Scholar
Montanino, M., Alessandrini, F., Passerini, S., Appetecchi, G.B., Electrochim. Acta 96, 124 (2013).CrossRefGoogle Scholar
Moreno, M., Montanino, M., Carewska, M., Appetecchi, G.B., Jeremias, S., Passerini, S., Electrochim. Acta 99, 108 (2013).CrossRefGoogle Scholar
Morrison, R.T., Boyd, R.N., Organic Chemistry, 3rd ed. (Allyn and Bacon, Boston, 1973).Google Scholar
Allinger, N.L., Cava, M.P., De Jongh, D.C., Johnson, C.R., Lebel, N.A., Stevens, C.L., Organic Chemistry, 2nd ed. (Worth Publishers, New York, 1976).Google Scholar
Appetecchi, G.B., Montanino, M., Zane, D., Carewska, M., Alessandrini, F., Passerini, S., Electrochim. Acta 54, 1325 (2009).CrossRefGoogle Scholar
Montanino, M., Carewska, M., Alessandrini, F., Passerini, S., Appetecchi, G.B., Electrochim. Acta 57, 153 (2011).CrossRefGoogle Scholar
MacFarlane, D.R., Huang, J., Forsyth, M., Nature 402, 792 (1999).CrossRefGoogle Scholar
Tommasi, I., Sorrentino, F., Tetrahedron Lett. 46, 2141 (2005).CrossRefGoogle Scholar
Clare, B., Sirwardana, A., MacFarlane, D.R., Topics in Current Chemistry—Synthesis, Purification and Characterization of Ionic Liquids (Springer, NY, 2009), p. 290.Google Scholar
Monteiro, A.L., Seferin, M., Dupont, J., de Souza, R.F., Polyhedron 15, 1217 (1996).Google Scholar
Boesmann, A., Van Hal, R., Wasserscheid, P., PCT Patent EP2003/002127 (September 12, 2003).Google Scholar
Castriota, M., Caruso, T., Agostino, R.G., Cazzanelli, E., Henderson, W.A., Passerini, S., J. Phys. Chem. A 109, 92 (2005).CrossRefGoogle Scholar
Nicotera, I., Oliviero, C., Henderson, W.A., Appetecchi, G.B., Passerini, S., J. Phys. Chem. B 109, 22814 (2005).CrossRefGoogle Scholar
Wilkes, J.S., Zaworotko, M.J., J. Chem. Soc., Chem. Commun. 1992, 965 (1992).CrossRefGoogle Scholar
Pitner, W.R., Seddon, K.R., Stack, K.M., Curzons, A., Freer, R., Patent WO 01/40146 (July 6, 2001).Google Scholar
Cassol, C.C., Costa Ferrera, B., Ebeling, G., Dupont, J., US Patent 7,825,259 B2 (November 2, 2010).Google Scholar
Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., Rogers, R.D., Green Chem. 4, 407 (2002).CrossRefGoogle Scholar
Jodry, J.J., Mikami, K., Tetrahedron Lett. 45, 4429 (2004).CrossRefGoogle Scholar
Silveira, P.B., Lando, V.R., Dupont, J., Monteiro, A.L., Adv. Synth. Catal. 153, 344 (2002).Google Scholar
Davis, J.H. Jr, Gordon, C.M., Hilgers, C., Wasserscheid, P., in Ionic Liquid in Synthesis, Wasserscheid, P., Welton, T., Eds. (Wiley, Weinheim, 2003), C. 2.Google Scholar
Scammells, P.J., Scott, J.L., Singer, R.D., Aust. J. Chem. 58, 155 (2005).CrossRefGoogle Scholar
Clare, B.R., Bayley, P.M., Best, A.S., Forsyth, M., MacFarlane, D.R., Chem. Commun. 23, 2689 (2008).CrossRefGoogle Scholar
Endres, F., Abedin, S.Z., Borissenko, N., Z. Phys. Chem. 210 1377 (2008).Google Scholar
Nockemann, P., Binnemans, K., Driesen, K., Chem. Phys. Lett. 415, 13 (2005).CrossRefGoogle Scholar