Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:52:58.304Z Has data issue: false hasContentIssue false

A topological twist on materials science

Published online by Cambridge University Press:  13 March 2014

Sanju Gupta
Affiliation:
Western Kentucky University, USA; sanju.gupta@wku.edu
Avadh Saxena
Affiliation:
Los Alamos National Laboratory, NM, USA; avadh@lanl.gov
Get access

Abstract

The primary objective of this article is twofold: to address the key concept of topology that impacts materials science in a major way and to convey the excitement to the materials community of recent significant advances in our understanding of the important topological notions in a wide class of materials with potential technological applications. A paradigm of topology/geometry → property → functionality is emerging that goes beyond the traditional microscopic structure → property → functionality relationship. The new approach delineates the active roles of topology and geometry in design, fabrication, characterization, and predictive modeling of novel materials properties and multifunctionalities. After introducing the essentials of topology and geometry, we elucidate these concepts through a gamut of nanocarbon allotropes of de novo carbons, hierarchical self-assembled soft- and biomaterials, supramolecular assemblies, and nanoporous materials. Applications of these topological materials range from sensing, energy storage/conversion, and catalysis to nanomedicine.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nakahara, M., Geometry, Topology and Physics, Graduate Student Series in Physics (Taylor & Francis, Boca Raton, FL, 1990).Google Scholar
Munkres, J.R., Topology, 2nd ed. (Pearson, London, 2000).Google Scholar
Francis, G.K., A Topological Picturebook (Springer, NY, 2006).Google Scholar
Hasan, M., Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010).Google Scholar
Massiot, D., Messinger, R.J., Cadars, S., Deschamps, M., Montouillout, V., Pellerin, N., Veron, E., Allix, M., Florian, P., Fayon, F., Acc. Chem. Res. 46, 1975 (2013).Google Scholar
Zou, X., Ren, H., Zhu, G., Chem. Commun. 49, 3911 (2013).Google Scholar
Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G., Prog. Mater. Sci. 46, 309 (2001).Google Scholar
Muhlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., Boni, P., Science 323, 915 (2009).CrossRefGoogle Scholar
Gupta, S., Saxena, A., J. Raman Spectrosc. 39, 1127 (2009).Google Scholar
Gupta, S., Saxena, A., J. Appl. Phys. 109, 074316 (2011).Google Scholar
Yook, S.H., Oltvai, Z.N., Barabasi, A.L., Proteomics 4, 928 (2004).Google Scholar
Yang, H., Coombs, N., Ozin, G.A., Nature 386, 692 (1997).Google Scholar
Zhao, D., Timmons, D.J., Yuan, D., Zhou, H.-C., Acc. Chem. Res. 44, 123 (2011).Google Scholar
Turro, N.J., Garcia-Garibay, M., in Photochemistry in Organized and Constrained Media, Ramamurthy, V., Ed. (VCH Publishers, New York, 1991), pp. 121.Google Scholar
Hyde, S.T., Schröder-Turk, G.E., Interface Focus 2, 529 (2012).Google Scholar
Yan, B., Zhang, S.-C., Rep. Prog. Phys. 75, 096501 (2012).Google Scholar
Cayssol, J., Condens. Matter (2013), available at http://arxiv.org/abs/1310.0792.Google Scholar
Gupta, S., Saxena, A., J. Appl. Phys. 112, 114316 (2012).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).Google Scholar
Kroto, H., Heath, J.R., O’Brien, S.C., Curl, R.E., Smalley, R.E., Nature 318, 162 (1985).Google Scholar
Hirsch, A., Brettreich, M., Fullerenes-Chemistry and Reactions (Wiley, NY, 2004).CrossRefGoogle Scholar
Tanda, S., Tsuneta, T., Okajima, Y., Inagaki, K., Yamaya, K., Hatakenaka, N., Nature 417, 397 (2002).Google Scholar
Yamashiro, A., Shimoi, Y., Harigaya, K., Wakabayashi, K., Physica E 22, 688 (2004).Google Scholar
Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Matthias, M., Seitsonen, A.P., Moussa, S., Feng, X., Muellen, K., Fasel, R., Nature 466, 470 (2010).Google Scholar
Sinnott, S.B., Andrews, R., Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).Google Scholar
Rubio, A., Corkill, J., Cohen, M.L., Phys. Rev. B 49, 5081 (1994).Google Scholar
Oshima, Y., Onga, A., Takayanagi, K., Phys. Rev. Lett. 91, 205503 (2003).Google Scholar
Ajami, D., Oeckler, O., Simon, A., Herges, R., Nature 426, 819 (2003).Google Scholar
Hadjichristidis, N., Pispas, S., Floudas, G., Block Copolymers: Synthetic Strategies, Physical Properties, and Applications (Wiley, NY, 2003).Google Scholar
Michalet, X., Bensimon, D., Science 269, 666 (1995).Google Scholar
Lipowsky, R., Encyclopedia of Applied Physics 23, 199 (1998).Google Scholar
Saranathan, V., Osuji, C.O., Mochrie, S.G., Noh, H., Narayanan, S., Sandy, A., Dufresne, E.R., Prum, R.O., Proc. Natl. Acad. Sci. U.S.A. 107, 11676 (2010).Google Scholar
Crossland, E.J.W., Kamperman, M., Nedelcu, M., Ducati, C., Wiesner, U., Smilgies, D.-M., Toombes, G.E.S., Hillmyer, M.A., Ludwigs, S., Steiner, U., Snaith, H.J. Nano Lett. 9, 2807 (2009).CrossRefGoogle Scholar
King, R.B., J. Chem. Inf. Comput. Sci. 38, 180 (1998).Google Scholar
Hutzler, S., Weaire, D., The Physics of Foams (Oxford University Press, UK, 1999).Google Scholar
Bohn, S., Eur. Phys. J. E 11, 177 (2003).Google Scholar
Skjeltorp, A.T., Knots and Applications to Biology, Chemistry and Physics (Springer, NY, 1996).Google Scholar
Christensen, B., Nielsen, J., Adv. Biochem. Eng. Biotechnol. 66, 209 (2000).Google Scholar
Sperling, L.H., J. Polym. Sci. Macromol. Rev. 12, 141 (1977).Google Scholar
Lazar, E.A., Mason, J.K., MacPherson, R.D., Srolovitz, D.J., Phys. Rev. Lett. 109, 095505 (2012).Google Scholar
Huang, X., Radman, A., Xie, Y.M., Comput. Mater. Sci. 50, 1861 (2011).Google Scholar
Hobbs, L.W., Jesurum, C.E., Pulim, V., Berger, B., Philos. Mag. A 78, 679 (1998).Google Scholar
Ishøy, T., Mortensen, K., Langmuir 21, 1766 (2005).Google Scholar
Hills, R.D. Jr., Kathuria, S.V., Wallace, L.A., Day, I.J., Brooks, C.L. 3rd, Matthews, C.R., J. Mol. Biol. 398, 332 (2010).Google Scholar
Wang, W.L., Yazyev, O.V., Meng, S., Kaxiras, E., Phys. Rev. Lett. 102, 157201 (2009).Google Scholar
Lavrentovich, O.D., in Patterns of Symmetry Breaking, Arodz, H., Dziarmaga, J., Zurek, W.H., Eds. (Kluwer Academic, The Netherlands, 2003), pp. 161195.Google Scholar
Matsumoto, E.A., Alexander, G.P., Kamien, R.D., Phys. Rev. Lett. 103, 257804 (2009).Google Scholar
Schoen, A.H., NASA Technical Note TN D-5541 (1970).Google Scholar
Sezgin, E., Kaiser, H.-J., Baumgart, T., Schwille, P., Simons, K., Levental, I., Nat. Protoc. 7, 1042 (2012).Google Scholar
Katsaras, J., Gutberlet, T., Eds., in Lipid Bilayers – Structure and Interactions (Springer-Verlag, Berlin-Heidelberg, 2001).Google Scholar
Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cancádo, L.G., Jorio, A., Saito, R., Phys. Chem. Chem. Phys. 9, 1276 (2007), and references therein.Google Scholar
Dresselhaus, M.S., Eklund, P.C., Adv. Phys. 49, 705 (2000).Google Scholar
Charlier, J.-C., Acc. Chem. Res. 35, 1063 (2002).Google Scholar
Iijima, S., Ichihashi, T., Ando, Y., Nature 356, 776 (1992).Google Scholar
Chico, L., Crespi, V.H., Benedict, L.X., Louie, S.G., Cohen, M.L., Phys. Rev. Lett. 76, 971 (1996).Google Scholar
Pachos, J.K., Contemp. Phys. 50, 375 (2009).Google Scholar
Zsoldos, I., J. Nanotechnol. Sci. Appl. 3, 101 (2010).Google Scholar
Duplock, E.J., Scheffler, M., Lindan, P.J.D., Phys. Rev. Lett. 92, 225502 (2004).Google Scholar
Gupta, S., Patel, R.J., J. Raman Spectrosc. 38, 188 (2007).Google Scholar
Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y., Nat. Nanotechnol. 7, 11 (2011).Google Scholar
Blasé, X., Benedict, L.X., Shirley, E.L., Louie, S.G., Phys. Rev. Lett. 72, 1878 (1994).Google Scholar
Ferrari, A.C., Basko, D.M., Nat. Nanotechnol. 8, 235 (2013).Google Scholar
Dunsch, L., Ziegs, F., Fröhner, J., Kirbach, U., Klostermann, K., Bartl, A., Feist, U., Electronic Properties of Fullerenes, Springer Series in Solid-State Sciences (Springer, NY, 1993), vol. 117, pp. 3943.Google Scholar
Yamamoto, E., Tansho, M., Tomiyama, T., Shinohara, H., Kawahara, H., Kobayashi, Y., Am. Chem. Soc. 118, 2293 (1996).Google Scholar
Takata, M., Nishibori, E., Umeda, B., Sakata, M., Yamamoto, E., Shinohara, H., Phys. Rev. Lett. 78, 3330 (1997).Google Scholar
Wang, H., Chhowalla, M., Sano, N., Jia, S., Amaratunga, G.A.J., Nanotechnology 15, 546 (2004).Google Scholar
Murata, K., Miyawaki, J., Yudasaka, M., Iijima, S., Kaneko, K., Carbon 43, 2826 (2005).CrossRefGoogle Scholar
Yudasaka, M., Komatsu, T., Ichihashi, T., Achiba, Y., Iijima, S., J. Phys. Chem. B 107, 4681(2003).Google Scholar
Tan, P., Dimovski, S., Gogotsi, Y., Philos. Trans. R. Soc. London, A 362, 2289 (2004).Google Scholar
Meunier, V., Lambin, Ph., Lucas, A.A., Phys. Rev. B 57, 14886 (1998).Google Scholar
Charlier, J.C., Rignanese, G.M., Phys. Rev. Lett. 86, 5970 (2001).Google Scholar
Vidano, R.P., Fishbach, D.B., Willis, L.J., Loehr, T.M., Solid State Commun. 39, 341 (1981).Google Scholar
Baranov, A.V., Bekhterev, A.N., Bobovich, Y.S., Petrov, V.I., Opt. Spectrosc. 62, 1036 (1987).Google Scholar
Thomsen, C., Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
Mennella, V., Monaco, G., Colangeli, L., Bussoletti, E., Carbon 33, 115 (1995).Google Scholar
Vogel, H.-J., Lecture Notes in Physics, Mecke, K.R., Stoyan, D., Eds. (Springer-Verlag, Berlin, 2002), vol. 600, pp. 7592.Google Scholar
Chae, H.K., Siberio-Perez, D.Y., Kim, J., Go, Y.-B., Eddaoudi, M., Matzger, A.J., O’Keefe, M., Yaghi, O.M., Nature 427, 523 (2004).Google Scholar
Lee, G.-H., Cooper, R.C., An, S.J., Lee, S., van der Zande, A., Petrone, N., Hammerberg, A.G., Lee, C., Crawford, B., Oliver, W., Kysar, J.W., Hone, J., Science 340, 1073 (2013).Google Scholar
Gröger, R., Lookman, T., Saxena, A., Phys. Rev. B 78, 184101 (2008).Google Scholar
Dauxois, T., Peyrard, M., Physics of Solitons (Cambridge University Press, UK, 2006).Google Scholar
Seki, S., Yu, X.Z., Ishiwata, S., Tokura, Y., Science 336, 198 (2012).Google Scholar
Fukuda, J., Zumer, S., Nat. Commun. 2, 246 (2011).Google Scholar
Zhang, S., Gilbert, I., Nisoli, C., Chern, G.-W., Erickson, M.J., O’Brien, L., Leighton, C., Lammert, P.E., Crespi, V.H., Schiffer, P., Nature 500, 553 (2013).Google Scholar
Milde, P., Kohler, D., Seidel, J., Eng, L.M., Bauer, A., Chacon, A., Kindervater, J., Muhlbauer, S., Pfleiderer, C., Buhrandt, S., Schutte, C., Rosch, A., Science 340, 1076 (2013).Google Scholar
Tasinkevych, M., Silvestre, N.M., Telo da Gama, M.M., New J. Phys. 14, 073030 (2012).Google Scholar
Settles, G.S., Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, Berlin, 2001).Google Scholar
Dierking, I., Marshall, O., Wright, J., Bulleid, N., Phys. Rev. E 71, 061709 (2005).Google Scholar
Chae, S.C., Horibe, Y., Jeong, D.Y., Rodan, S., Lee, N., Cheong, S.W., Proc. Natl. Acad. Sci. U.S.A. 107, 21366 (2010).Google Scholar
Chen, B.G., Ackerman, P.J., Alexander, G.P., Kamien, R.D., Smalyukh, I.I., Phys. Rev. Lett. 110, 237801 (2013).Google Scholar
Fischer, J., Wegener, M., Laser Photonics Rev. 7, 22 (2013).Google Scholar
Senyuk, B., Liu, Q., He, S., Kamien, R.D., Kusner, R.B., Lubensky, T.C., Smalyukh, I.I., Nature 493, 200 (2013).Google Scholar
Quillet, C., Talebi, S.A., Rabaud, D., Kafer, J., Cox, S.J., Graner, F., Philos. Mag. Lett. 88, 651 (2008).Google Scholar
Benoit, J., Saxena, A., Lookman, T., J. Phys. A 34, 9417 (2001).Google Scholar
Aharonov, Y., Casher, A., Phys. Rev. Lett. 53, 319 (1984).Google Scholar
Aharonov, Y., Anandan, J., Phys. Rev. Lett. 58, 1593 (1987).Google Scholar
Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P., Science 336, 1003 (2012).Google Scholar
Haldane, F.D.M., Raghu, S., Phys. Rev. Lett. 100, 013904 (2008).Google Scholar
Verbin, M., Zilberberg, O., Kraus, Y.E., Lahini, Y., Silberberg, Y., Phys. Rev. Lett. 110, 076403 (2013).Google Scholar
Mostepanenko, V.M., Trunov, N.N., The Casimir Effect and Its Applications (Clarendon, Oxford, 1997).Google Scholar
Bellucci, S., Saharian, A.A., Phys. Rev. D 80, 105003 (2009).Google Scholar
Sasaki, S., Kriener, M., Segawa, K., Yada, K., Tanaka, Y., Sato, M., Ando, Y., Phys. Rev. Lett. 107, 217001 (2011).Google Scholar
Fu, L., Phys. Rev. Lett. 106, 106802 (2011).Google Scholar
Rossi, E., Bardarson, J.H., Fuhrer, M.S., Sarma, S. Das, Phys. Rev. Lett. 109, 096801 (2012).Google Scholar
Balatsky, A.V., Vekhter, I., Zhu, J.-X., Rev. Mod. Phys. 78, 373 (2006).Google Scholar
Wehling, T.O., Black-Schaffer, A.M., Balatsky, A.V., Adv. Phys., in press (2014).Google Scholar
Irvine, W.T.M., Hollingsworth, A.D., Grier, D.G., Chaikin, P.M., Proc. Nat. Acad. Sci. U.S.A. 110, 15544 (2013).Google Scholar