Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:53:15.817Z Has data issue: false hasContentIssue false

Thermal properties of graphene: Fundamentals and applications

Published online by Cambridge University Press:  23 November 2012

Eric Pop
Affiliation:
University of Illinois at Urbana-Champaign; epop@illinois.edu
Vikas Varshney
Affiliation:
Air Force Research Laboratory; vikas.varshney@wpafb.af.mil
Ajit K. Roy
Affiliation:
Air Force Research Laboratory; ajit.roy@wpafb.af.mil
Get access

Abstract

Graphene is a two-dimensional (2D) material with over 100-fold anisotropy of heat flow between the in-plane and out-of-plane directions. High in-plane thermal conductivity is due to covalent sp2bonding between carbon atoms, whereas out-of-plane heat flow is limited by weak van der Waals coupling. Herein, we review the thermal properties of graphene, including its specific heat and thermal conductivity (from diffusive to ballistic limits) and the influence of substrates, defects, and other atomic modifications. We also highlight practical applications in which the thermal properties of graphene play a role. For instance, graphene transistors and interconnects benefit from the high in-plane thermal conductivity, up to a certain channel length. However, weak thermal coupling with substrates implies that interfaces and contacts remain significant dissipation bottlenecks. Heat flow in graphene or graphene composites could also be tunable through a variety of means, including phonon scattering by substrates, edges, or interfaces. Ultimately, the unusual thermal properties of graphene stem from its 2D nature, forming a rich playground for new discoveries of heat-flow physics and potentially leading to novel thermal management applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pierson, H.O., Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar
Schabel, M.C., Martins, J.L., Phys. Rev. B 46, 7185 (1992).CrossRefGoogle Scholar
Bullett, D.W., J. Phys. C: Solid State Phys. 8, 2707 (1975).CrossRefGoogle Scholar
Saito, R., Dresselhaus, G., Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (World Scientific, Singapore, 1998).CrossRefGoogle Scholar
Mohr, M., Maultzsch, J., Dobardžić, E., Reich, S., Milošević, I., Damnjanović, M., Bosak, A., Krisch, M., Thomsen, C., Phys. Rev. B 76, 035439 (2007).CrossRefGoogle Scholar
Oshima, C., Aizawa, T., Souda, R., Ishizawa, Y., Sumiyoshi, Y., Solid State Commun. 65, 1601 (1988).CrossRefGoogle Scholar
Wirtz, L., Rubio, A., Solid State Commun. 131, 141 (2004).CrossRefGoogle Scholar
Mingo, N., Broido, D.A., Phys. Rev. Lett. 95, 096105 (2005).CrossRefGoogle Scholar
Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A., Phys. Rev. B 79, 155413 (2009).CrossRefGoogle Scholar
Popov, V.N., Phys. Rev. B 66, 153408 (2002).CrossRefGoogle Scholar
Muñoz, E., Lu, J., Yakobson, B.I., Nano Lett. 10, 1652 (2010).CrossRefGoogle Scholar
Pop, E., Nano Res. 3, 147 (2010).CrossRefGoogle Scholar
Ong, Z.-Y., Pop, E., J. Appl. Phys. 108, 103502 (2010).CrossRefGoogle Scholar
Ong, Z.-Y., Pop, E., Shiomi, J., Phys. Rev. B 84, 165418 (2011).CrossRefGoogle Scholar
Kang, K., Abdula, D., Cahill, D.G., Shim, M., Phys. Rev. B 81, 165405 (2010).CrossRefGoogle Scholar
Qiu, B., Ruan, X., Appl. Phys. Lett. 100, 193101 (2012).CrossRefGoogle Scholar
Tohei, T., Kuwabara, A., Oba, F., Tanaka, I., Phys. Rev. B 73, 064304 (2006).CrossRefGoogle Scholar
Nicklow, R., Wakabayashi, N., Smith, H.G., Phys. Rev. B 5, 4951 (1972).CrossRefGoogle Scholar
Nihira, T., Iwata, T., Phys. Rev. B 68, 134305 (2003).CrossRefGoogle Scholar
Benedict, L.X., Louie, S.G., Cohen, M.L., Solid State Commun. 100, 177 (1996).CrossRefGoogle Scholar
Hone, J., Top. Appl. Phys. 80, 273 (2001).CrossRefGoogle Scholar
Fried, L.E., Howard, W.M., Phys. Rev. B 61, 8734 (2000).CrossRefGoogle Scholar
Reeber, R., Wang, K., J. Electron. Mater. 25, 63 (1996).CrossRefGoogle Scholar
Tewary, V.K., Yang, B., Phys. Rev. B 79, 125416 (2009).CrossRefGoogle Scholar
Aizawa, T., Souda, R., Ishizawa, Y., Hirano, H., Yamada, T., Tanaka, K.-i., Oshima, C., Surf. Sci. 237, 194 (1990).CrossRefGoogle Scholar
Shikin, A.M., Farías, D., Rieder, K.H., Europhys. Lett. 44, 44 (1998).CrossRefGoogle Scholar
Ong, Z.Y., Pop, E., Phys. Rev. B 84, 075471 (2011).CrossRefGoogle Scholar
Fong, K.C., Schwab, K.C., Phys. Rev. X 2, 031006 (2012).Google Scholar
Jeong, C., Datta, S., Lundstrom, M., J. Appl. Phys. 109, 073718 (2011).CrossRefGoogle Scholar
Chen, S., Moore, A.L., Cai, W., Suk, J.W., An, J., Mishra, C., Amos, C., Magnuson, C.W., Kang, J., Shi, L., Ruoff, R.S., ACS Nano 5, 321 (2010).CrossRefGoogle Scholar
Balandin, A.A., Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., Ruoff, R.S., Nat. Mater. 11, 203 (2012).CrossRefGoogle Scholar
Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X.S., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., Shi, L., Science 328, 213 (2010).CrossRefGoogle Scholar
Liao, A.D., Wu, J.Z., Wang, X.R., Tahy, K., Jena, D., Dai, H.J., Pop, E., Phys. Rev. Lett. 106, 256801 (2011).CrossRefGoogle Scholar
Pop, E., Mann, D., Wang, Q., Goodson, K.E., Dai, H.J., Nano Lett. 6, 96 (2006).CrossRefGoogle Scholar
Kim, P., Shi, L., Majumdar, A., McEuen, P.L., Phys. Rev. Lett. 87, 215502 (2001).CrossRefGoogle Scholar
Ho, C.Y., Powell, R.W., Liley, P.E., J. Phys. Chem. Ref. Data, 1, 279 (1972).CrossRefGoogle Scholar
Sadeghi, M.M., Petters, M.T., Shi, L., Solid State Commun. 152, 1321 (2012).CrossRefGoogle Scholar
Anthony, T.R., Banholzer, W.F., Fleischer, J.F., Wei, L.H., Kuo, P.K., Thomas, R.L., Pryor, R.W., Phys. Rev. B 42, 1104 (1990).CrossRefGoogle Scholar
Jang, W., Chen, Z., Bao, W., Lau, C.N., Dames, C., Nano Lett. 10, 3909 (2010).CrossRefGoogle Scholar
Saito, K., Nakamura, J., Natori, A., Phys. Rev. B 76, 115409 (2007).CrossRefGoogle Scholar
Pettes, M.T., Jo, I., Yao, Z., Shi, L., Nano Lett. 11, 1195 (2011).CrossRefGoogle Scholar
Berman, R., Phys. Rev. B 45, 5726 (1992).CrossRefGoogle Scholar
Chen, Z., Jang, W., Bao, W., Lau, C.N., Dames, C., Appl. Phys. Lett. 95, 161910 (2009).CrossRefGoogle Scholar
Koh, Y.K., Bae, M.-H., Cahill, D.G., Pop, E., Nano Lett. 10, 4363 (2010).CrossRefGoogle Scholar
Mak, K.F., Lui, C.H., Heinz, T.F., Appl. Phys. Lett. 97, 221904 (2010).CrossRefGoogle Scholar
Lindsay, L., Broido, D.A., Mingo, N., Phys. Rev. B 82, 115427 (2010).CrossRefGoogle Scholar
Haskins, J., Kınacı, A., Sevik, C., Sevinçli, H.l., Cuniberti, G., Çağın, T., ACS Nano 5, 3779 (2011).CrossRefGoogle Scholar
Aksamija, Z., Knezevic, I., Appl. Phys. Lett. 98, 141919 (2011).CrossRefGoogle Scholar
Liu, W., Asheghi, M., J. Appl. Phys. 98, 123523 (2005).CrossRefGoogle Scholar
Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., Majumdar, A., Phys. Rev. Lett. 101, 105501 (2008).CrossRefGoogle Scholar
Steinhögl, W., Schindler, G., Steinlesberger, G., Traving, M., Engelhardt, M., J. Appl. Phys. 97, 023706 (2005).CrossRefGoogle Scholar
Klemens, P.G., Pedraza, D.F., Carbon 32, 735 (1994).CrossRefGoogle Scholar
Hu, J.N., Ruan, X.L., Chen, Y.P., Nano Lett. 9, 2730 (2009).CrossRefGoogle Scholar
Evans, W.J., Hu, L., Keblinski, P., Appl. Phys. Lett. 96, 203112 (2010).CrossRefGoogle Scholar
Zhang, H.J., Lee, G., Fonseca, A.F., Borders, T.L., Cho, K., J. Nanomater. 2010, 537657 (2010).Google Scholar
Hu, J.N., Schiffli, S., Vallabhaneni, A., Ruan, X.L., Chen, Y.P., Appl. Phys. Lett. 97, 133107 (2010).CrossRefGoogle Scholar
Mortazavi, B., Rajabpour, A., Ahzi, S., Remond, Y., Allaei, S.M.V., Solid State Commun. 152, 261 (2012).CrossRefGoogle Scholar
Zhang, H.J., Lee, G., Cho, K., Phys. Rev. B 84, 115460 (2011).CrossRefGoogle Scholar
Zhong, W.-R., Huang, W.-H., Deng, X.-R., Ai, B.-Q., Appl. Phys. Lett. 99, 193104 (2011).CrossRefGoogle Scholar
Xu, Y., Chen, X.B., Wang, J.S., Gu, B.L., Duan, W.H., Phys. Rev. B 81, 195425 (2010).CrossRefGoogle Scholar
Huang, Z., Fisher, T.S., Murthy, J.Y., J. Appl. Phys. 108, 094319 (2010).CrossRefGoogle Scholar
Jiang, J.W., Wang, B.S., Wang, J.S., Appl. Phys. Lett. 98, 113114 (2011).CrossRefGoogle Scholar
Yang, N., Ni, X., Jiang, J.-W., Li, B., Appl. Phys. Lett. 100, 093107 (2012).CrossRefGoogle Scholar
Frenkel, D., Smit, B., Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, ed. 2, 2002).Google Scholar
Hao, F., Fang, D.N., Xu, Z.P., Appl. Phys. Lett. 99, 041901 (2011).CrossRefGoogle Scholar
Bagri, A., Kim, S.P., Ruoff, R.S., Shenoy, V.B., Nano Lett. 11, 3917 (2011).CrossRefGoogle Scholar
Cao, A., Qu, J., J. Appl. Phys. 111, 053529 (2012).CrossRefGoogle Scholar
Li, X., Maute, K., Dunn, M.L., Yang, R., Phys. Rev. B 81, 245318 (2010).CrossRefGoogle Scholar
Wei, N., Xu, L., Wang, H.-Q., Zheng, J.-C., Nanotechnology 22, 105705 (2011).CrossRefGoogle Scholar
Chien, S.-K., Yang, Y.-T., Chen, C.O.-K., Carbon 50, 421 (2012).CrossRefGoogle Scholar
Sevinçli, H., Cuniberti, G., Phys. Rev. B 81, 113401 (2010).CrossRefGoogle Scholar
Yang, N., Zhang, G., Li, B.W., Appl. Phys. Lett. 95, 033107 (2009).CrossRefGoogle Scholar
Zhang, G., Zhang, H.S., Nanoscale 3, 4604 (2011).CrossRefGoogle Scholar
Pei, Q.-X., Zhang, Y.-W., Sha, Z.-D., Shenoy, V.B., Appl. Phys. Lett. 100, 101901 (2012).CrossRefGoogle Scholar
Lee, J., Varshney, V., Roy, A.K., Ferguson, J.B., Farmer, B.L., Nano Lett. 12, 3491 (2012).CrossRefGoogle Scholar
Lindsay, L., Broido, D.A., Phys. Rev. B 81, 205441 (2010).CrossRefGoogle Scholar
Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M., Dai, H., Phys. Rev. Lett. 92, 106804 (2004).CrossRefGoogle Scholar
Park, J.-Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Üstünel, H., Braig, S., Arias, T.A., Brouwer, P.W., McEuen, P.L., Nano Lett. 4, 517 (2004).CrossRefGoogle Scholar
Shur, M.S., IEEE Electron Device Lett. 23, 511 (2002).CrossRefGoogle Scholar
Wang, J., Lundstrom, M., IEEE Trans. Electron Devices 50, 1604 (2003).CrossRefGoogle Scholar
Prasher, R., Phys. Rev. B 77, 075424 (2008).CrossRefGoogle Scholar
Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M., J. Appl. Phys. 107, 023707 (2010).CrossRefGoogle Scholar
Bae, M.-H., Islam, S., Dorgan, V.E., Pop, E., ACS Nano 5, 7936 (2011).CrossRefGoogle Scholar
Behnam, A., Lyons, A.S., Bae, M.-H., Chow, E.K., Islam, S., Neumann, C.M., Pop, E., Nano Lett. 12, 4424 (2012).CrossRefGoogle Scholar
Barreiro, A., Lazzeri, M., Moser, J., Mauri, F., Bachtold, A., Phys. Rev. Lett. 103, 076601 (2009).CrossRefGoogle Scholar
Dorgan, V.E., Bae, M.H., Pop, E., Appl. Phys. Lett. 97, 082112 (2010).CrossRefGoogle Scholar
Perebeinos, V., Avouris, P., Phys. Rev. B 81, 195442 (2010).CrossRefGoogle Scholar
Kang, K., Abdula, D., Cahill, D.G., Shim, M., Phys. Rev. B 81, 165405 (2010).CrossRefGoogle Scholar
Grosse, K.L., Bae, M.H., Lian, F.F., Pop, E., King, W.P., Nat. Nanotechnol. 6, 287 (2011).CrossRefGoogle Scholar
Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E., Nano Lett. 8, 3166 (2008).CrossRefGoogle Scholar
Tylianakis, E., Dimitrakakis, G.K., Melchor, S., Dobado, J.A., Froudakis, G.E., Chem. Commun. 47, 2303 (2011).CrossRefGoogle Scholar
Chen, Z.P., Ren, W.C., Gao, L.B., Liu, B.L., Pei, S.F., Cheng, H.M., Nat. Mater. 10, 424 (2011).CrossRefGoogle Scholar
Zhang, W., Sherrell, P., Minett, A.I., Razal, J.M., Chen, J., Energy Environ. Sci. 3, 1286 (2010).CrossRefGoogle Scholar
Du, F., Yu, D.S., Dai, L.M., Ganguli, S., Varshney, V., Roy, A.K., Chem. Mater. 23, 4810 (2011).CrossRefGoogle Scholar
Varshney, V., Patnaik, S.S., Roy, A.K., Froudakis, G., Farmer, B.L., ACS Nano 4, 1153 (2010).CrossRefGoogle Scholar
Varshney, V., Roy, A.K., Froudakis, G., Farmer, B.L., Nanoscale 3, 3679 (2011).CrossRefGoogle Scholar
Paul, R.K., Ghazinejad, M., Penchev, M., Lin, J.A., Ozkan, M., Ozkan, C.S., Small 6, 2309 (2010).CrossRefGoogle Scholar
Zhang, L.L., Xiong, Z.G., Zhao, X.S., ACS Nano 4, 7030 (2010).CrossRefGoogle Scholar
Yu, K.H., Lu, G.H., Bo, Z., Mao, S., Chen, J.H., J. Phys. Chem. Lett. 2, 1556 (2011).CrossRefGoogle Scholar