Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T04:27:42.608Z Has data issue: false hasContentIssue false

Strategies for stretchable polymer semiconductor layers

Published online by Cambridge University Press:  02 February 2017

Kaliannan Thiyagarajan
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Republic of Korea; thiyagu@postech.ac.kr
Unyong Jeong
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Republic of Korea; ujeong@postech.ac.kr
Get access

Abstract

Electronics are evolving from “brittle” to “flexible” and are expected to advance to “stretchable.” Development of stretchable semiconductor materials is a key step for the realization of highly deformable transistors. This article introduces the technological strategies for achieving stretchable polymer semiconductors, including a geometrical approach, formation of a nanofibril network, microcrack formation, and synthesis of new polymers. We conclude with perspectives on further development of stretchable polymer semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T., Science 321, 1468 (2008).Google Scholar
Gray, D.S., Tien, J., Chen, C.S., Adv. Mater. 16, 393 (2004).Google Scholar
Oh, J.Y., Kim, S., Baik, H.-K., Jeong, U., Adv. Mater. 28, 4455 (2016).CrossRefGoogle ScholarPubMed
Lipomi, D.J., Vosgueritchian, M., Tee, B.C.K., Hellstrom, S.L., Lee, J.A., Fox, C.H., Bao, Z., Nat. Nanotechnol. 6, 788 (2011).Google Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwodiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., Someya, T., Nature 499, 458 (2013).Google Scholar
You, I., Kim, B., Park, J., Koh, K., Shin, S., Jung, S., Jeong, U., Adv. Mater. 28, 6359 (2016).Google Scholar
Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T., Nat. Mater. 8, 494 (2009).Google Scholar
Gaikwad, A.M., Zamarayeva, A.M., Rousseau, J., Chu, H., Derin, I., Steingart, D.A., Adv. Mater. 24, 5071 (2012).CrossRefGoogle Scholar
Lipomi, D.J., Tee, B.C.K., Vosgueritchian, M., Bao, Z., Adv. Mater. 23, 1771 (2011).Google Scholar
Chortos, A., Lim, J., To, J.W.F., Vosgueritchian, M., Dusseault, T.J., Kim, T.-H., Hwang, S., Bao, Z., Adv. Mater. 26, 4253 (2014).CrossRefGoogle Scholar
Shin, M., Song, J.H., Lim, G.-H., Lim, B., Park, J.-J., Jeong, U., Adv. Mater. 26, 3706 (2014).Google Scholar
Wu, H., Kustra, S., Gates, E.M., Bettinger, C.J., Org. Electron. 14, 1636 (2013).Google Scholar
Rogers, J.A., Someya, T., Huang, Y., Science 327, 1603 (2010).CrossRefGoogle Scholar
Kim, D.-H., Ahn, J.-H., Choi, W.M., Kim, H.-S., Kim, T.-H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., Rogers, J.A., Science 320, 507 (2008).CrossRefGoogle Scholar
Pope, C.E.S.M., Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, Oxford, UK, 1999).CrossRefGoogle Scholar
Wu, H.-C., Benight, S.J., Chortos, A., Lee, W.-Y., Mei, J., To, J.W.F., Lu, C., He, M., Tok, J.B.H., Chen, W.-C., Bao, Z., Chem. Mater. 26, 4544 (2014).Google Scholar
O’Connor, B., Kline, R.J., Conrad, B.R., Richter, L.J., Gundlach, D., Toney, M.F., DeLongchamp, D.M., Adv. Funct. Mater. 21, 3697 (2011).CrossRefGoogle Scholar
Gargi, D., Kline, R.J., DeLongchamp, D.M., Fischer, D.A., Toney, M.F., O’Connor, B.T., J. Phys. Chem. C 117, 17421 (2013).Google Scholar
Vashishth, D., Tanner, K.E., Bonfield, W., J. Biomech. 36, 121 (2003).Google Scholar
Savagatrup, S., Printz, A.D., Wu, H., Rajan, K.M., Sawyer, E.J., Zaretski, A.V., Bettinger, C.J., Lipomi, D.J., Synth. Met. 203, 208 (2015).CrossRefGoogle Scholar
Prins, P., Grozema, F.C., Schins, J.M., Patil, S., Scherf, U., Siebbeles, L.D.A., Phys. Rev. Lett. 96, 146601 (2006).Google Scholar
Shin, M., Oh, J.Y., Byun, K.-E., Lee, Y.-J., Kim, B., Baik, H.-K., Park, J.-J., Jeong, U., Adv. Mater. 27, 1255 (2015).CrossRefGoogle Scholar
Song, E., Kang, B., Choi, H.H., Sin, D.H., Lee, H., Lee, W.H., Cho, K., Adv. Electron. Mater. 2, 1500250 (2016).CrossRefGoogle Scholar
Hoofman, R.J.O.M., de Haas, M.P., Siebbeles, L.D.A., Warman, J.M., Nature 392, 54 (1998).Google Scholar
Yao, Y., Dong, H., Hu, W., Adv. Mater. 28, 4513 (2016).CrossRefGoogle Scholar
Son, S.Y., Kim, Y., Lee, J., Lee, G.-Y., Park, W.-T., Noh, Y.-Y., Park, C.E., Park, T., J. Am. Chem. Soc. 138, 8096 (2016).Google Scholar
Peng, R., Pang, B., Hu, D., Chen, M., Zhang, G., Wang, X., Lu, H., Cho, K., Qiu, L., J. Mater. Chem. C 3, 3599 (2015).Google Scholar
Ramirez, A.L.B., Kean, Z.S., Orlicki, J.A., Champhekar, M., Elsakr, S.M., Krause, W.E., Craig, S.L., Nat. Chem. 5, 757 (2013).Google Scholar
Oh, J.Y., Gagne, S.R., Chiu, Y.C., Chortos, A., Lissel, F., Wang, G.J.N., Schroeder, B.C., Kurosawa, T., Lopez, J., Katsumata, T., Xu, J., Zhu, C., Gu, X., Bae, W.G., Kim, Y., Jin, L., Chung, J.W., Tok, J.B.H., Bao, Z., Nature 539, 411 (2016).Google Scholar