Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T10:06:32.778Z Has data issue: false hasContentIssue false

Spinterface: Crafting spintronics at the molecular scale

Published online by Cambridge University Press:  15 July 2014

Marta Galbiati
Affiliation:
Unité Mixte de Physique CNRS/Thales and Université Paris-Sud, France; marta.galbiati@thalesgroup.com
Sergio Tatay
Affiliation:
Chemistry Institute for Molecular Science, University of Valencia, Spain; sergio.tatay@uv.es
Clément Barraud
Affiliation:
Laboratoire Matériaux et Phénomènes Quantiques, Université Paris-Diderot, France; clement.barraud@univ-paris-diderot.fr
Alek V. Dediu
Affiliation:
Institute of Nanostructured Materials, CNR-ISMN, Italy; v.dediu@bo.ismn.cnr.it
Frédéric Petroff
Affiliation:
Unité Mixte de Physique CNRS/Thales and Université Paris-Sud, France; frederic.petroff@thalesgroup.com
Richard Mattana
Affiliation:
Unité Mixte de Physique CNRS/Thales and Université Paris-Sud, France; richard.mattana@thalesgroup.com
Pierre Seneor
Affiliation:
Unité Mixte de Physique CNRS/Thales and Université Paris-Sud, France; pierre.seneor@thalesgroup.com
Get access

Abstract

A number of studies have suggested that molecular materials could offer similar performance as, or even potentially supersede, those of inorganic materials in spintronics devices. Radically new spintronics functionalities, unavailable with conventional inorganic materials, could stem from the interface between ferromagnetic (FM) and molecular materials, giving rise to the so-called “spinterface” field. In this article, we review the fundamental concepts, recent experiments, and perspectives in this fast rising field, where the functionality is brought from the bulk to the ultimate downscaled device: the interface. The article shows how spin-dependent hybridization at the FM metal/molecule interface can lead to induced spin polarization in the molecular orbitals thanks to spin-dependent broadening and energy shifting of the molecular levels. Interfacial spin polarization can then be tailored thanks to chemical interactions. Examples of enhancement and reversal are given, and we highlight how this spin-dependent hybridization opens a new door for the spintronics crafting of multifunctionality through chemical designing and tuning on the molecular scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dediu, V., Murgia, M., Matacotta, F.C., Taliani, C., Barbanera, S., Solid State Commun. 122, 181 (2002).CrossRefGoogle Scholar
Xiong, Z.H., Wu, D., Valy Vardeny, Z., Shi, J., Nature 427, 821 (2004).Google Scholar
Rocha, A.R., García-Suárez, V.M., Bailey, S.W., Lambert, C.J., Ferrer, J., Sanvito, S., Nat. Mater. 4, 335 (2005).CrossRefGoogle Scholar
Santos, T.S., Lee, J.S., Migdal, P., Lekshmi, I.C., Satpati, B., Moodera, J.S., Phys. Rev. Lett. 98, 016601 (2007).CrossRefGoogle Scholar
Dediu, V.A., Hueso, L.E., Bergenti, I., Taliani, C., Nat. Mater. 8, 707 (2009).Google Scholar
Barraud, C., Seneor, P., Mattana, R., Fusil, S., Bouzehouane, K., Deranlot, C., Graziosi, P., Hueso, L., Bergenti, I., Dediu, V., Petroff, F., Fert, A., Nat. Phys. 6, 615 (2010).Google Scholar
Sanvito, S., Nat. Phys. 6, 562 (2010).CrossRefGoogle Scholar
Datta, S., Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2013).Google Scholar
Vázquez, H., Oszwaldowski, R., Pou, P., Ortega, J., Pérez, R., Flores, F., Kahn, A., Europhys. Lett. 65, 802 (2007).Google Scholar
Perrin, M.L., Verzijl, C.J.O., Martin, C.A., Shaikh, A.J., Eelkema, R., van Esch, J.H., van Ruitenbeek, J.M., Thijssen, J.M., van der Zant, H.S.J., Dulić, D., Nat. Nanotechnol. 8, 282 (2013).Google Scholar
Moodera, J.S., Santos, T.S., Nagahama, T., J. Phys. Condens. Matter 19, 165202 (2007).CrossRefGoogle Scholar
Ramos, A.V., Guittet, M.J., Moussy, J.B., Mattana, R., Deranlot, C., Petroff, F., Gatel, C., Appl. Phys. Lett. 91, 122107 (2007).Google Scholar
Iacovita, C., Rastei, M., Heinrich, B., Brumme, T., Kortus, J., Limot, L., Bucher, J., Phys. Rev. Lett. 101, 116602 (2008).Google Scholar
Atodiresei, N., Brede, J., Lazić, P., Caciuc, V., Hoffmann, G., Wiesendanger, R., Blügel, S., Phys. Rev. Lett. 105, 066601 (2010).CrossRefGoogle Scholar
Brede, J., Atodiresei, N., Kuck, S., Lazić, P., Caciuc, V., Morikawa, Y., Hoffmann, G., Blügel, S., Wiesendanger, R., Phys. Rev. Lett. 105, 047204 (2010).CrossRefGoogle Scholar
Brede, J., Wiesendanger, R., Phys. Rev. B: Condens. Matter 86, 184423 (2012).CrossRefGoogle Scholar
Schmaus, S., Bagrets, A., Nahas, Y., Yamada, T.K., Bork, A., Bowen, M., Beaurepaire, E., Evers, F., Wulfhekel, W., Nat. Nanotechnol. 6, 185 (2011).CrossRefGoogle Scholar
Kawahara, S.L., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., Smogunov, A., Barreteau, C., Nano Lett. 12, 4558 (2012).CrossRefGoogle Scholar
Lach, S., Altenhof, A., Tarafder, K., Schmitt, F., Ali, M.E., Vogel, M., Sauther, J., Oppeneer, P.M., Ziegler, C., Adv. Funct. Mater. 22, 989 (2012).Google Scholar
Djeghloul, F., Ibrahim, F., Cantoni, M., Bowen, M., Joly, L., Boukari, S., Ohresser, P., Bertran, F., Lefèvre, P., Thakur, P., Scheurer, F., Miyamachi, T., Mattana, R., Seneor, P., Jaafar, A., Rinaldi, C., Javaid, S., Arabski, J., Kappler, J.P., Wulfhekel, W., Brookes, N.B., Bertacco, R., Taleb-Ibrahimi, A., Alouani, M., Beaurepaire, E., Weber, W., Sci. Rep. 3, 1272 (2013).Google Scholar
Zhan, Y., Holmstrom, E., Lizarraga, R., Eriksson, O., Liu, X., Li, F., Carlegrim, E., Stafstrom, S., Fahlman, M., Adv. Mater. 22, 1626 (2010).Google Scholar
Tran, T.L.A., Wong, P.K.J., De Jong, M.P., van der Wiel, W.G., Zhan, Y.Q., Fahlman, M., Appl. Phys. Lett. 98, 222505 (2011).CrossRefGoogle Scholar
Steil, S., Großmann, N., Laux, M., Ruffing, A., Steil, D., Wiesenmayer, M., Mathias, S., Monti, O.L.A., Cinchetti, M., Aeschlimann, M., Nat. Phys. 9, 242 (2013).Google Scholar
Schulz, L., Nuccio, L., Willis, M., Desai, P., Shakya, P., Kreouzis, T., Malik, V.K., Bernhard, C., Pratt, F.L., Morley, N.A., Suter, A., Nieuwenhuys, G.J., Prokscha, T., Morenzoni, E., Gillin, W.P., Drew, A.J., Nat. Mater. 10, 39 (2011).Google Scholar
Raman, K.V., Kamerbeek, A.M., Mukherjee, A., Atodiresei, N., Sen, T.K., Lazić, P., Caciuc, V., Michel, R., Stalke, D., Mandal, S.K., Blügel, S., Münzenberg, M., Moodera, J.S., Nature 493, 509 (2013).Google Scholar
Yoshida, K., Hamada, I., Sakata, S., Umeno, A., Tsukada, M., Hirakawa, K., Nano Lett. 13, 481 (2013).CrossRefGoogle Scholar