Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:46:30.054Z Has data issue: false hasContentIssue false

Spectroscopic insights into the performance of quantum dot light-emitting diodes

Published online by Cambridge University Press:  12 September 2013

Wan Ki Bae
Affiliation:
Chemistry Division, Los Alamos National Laboratory;wbae@lanl.gov
Sergio Brovelli
Affiliation:
Department of Materials Science, Università degli Studi di Milano-Bicocca;sergio.brovelli@unimib.it
Victor I. Klimov
Affiliation:
Chemistry Division, Los Alamos National Laboratory;klimov@lanl.gov
Get access

Abstract

Lighting consumes almost one-fifth of all electricity generated today. In principle, with more efficient light sources replacing incandescent lamps, this demand can be reduced at least twofold. A dramatic improvement in lighting efficiency is possible by replacing traditional incandescent bulbs with light-emitting diodes (LEDs) in which current is directly converted into photons via the process of electroluminescence. The focus of this article is on the emerging technology of LEDs that use solution-processed semiconductor quantum dots (QDs) as light emitters. QDs are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. They feature near-unity emission quantum yields and narrow emission bands, which result in excellent color purity. Here, we review spectroscopic studies of QDs that address the problem of nonradiative carrier losses in QD-LEDs and approaches for its mitigation via the appropriate design of QD emitters. An important conclusion of our studies is that the realization of high-performance LEDs might require a new generation of QDs that in addition to being efficient single-exciton emitters would also show high emission efficiency in the multicarrier regime.

Type
Quantum dot light-emitting devices
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schubert, E.F., Light-Emitting Diodes (Cambridge University Press, Cambridge, UK, 2006).CrossRefGoogle Scholar
Schols, S., Device Architecture and Materials for Organic Light-Emitting Devices: Targeting High Current Densities and Control of the Triplet Concentration (Springer, London, UK, 2011).CrossRefGoogle Scholar
So, F., Organic Electronics: Materials, Processing, Devices and Applications (CRC Press, Boca Raton, FL, 2009).CrossRefGoogle Scholar
Tamayo, A.B., Alleyne, B.D., Djurovich, P.I., Lamansky, S., Tsyba, I., Ho, N.N., Bau, R., Thompson, M.E., J. Am. Chem. Soc. 125, 7377 (2003).CrossRefGoogle Scholar
Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H.-E., Adachi, C., Burrows, P.E., Forrest, S.R., Thompson, M.E., J. Am. Chem. Soc. 123, 4304 (2001).CrossRefGoogle Scholar
Forrest, S.R., Kaplan, M.L., Schmidt, P.H., J. Appl. Phys. 56, 543 (1984).CrossRefGoogle Scholar
Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B., Nature 347, 539 (1990).CrossRefGoogle Scholar
Gustafsson, G., Cao, Y., Treacy, G.M., Klavetter, F., Colaneri, N., Heeger, A.J., Nature 357, 477 (1992).CrossRefGoogle Scholar
Begley, W.J., Hatwar, T.K.S.I., SID Intl. Symp. Dig. Tech. Papers 37, 942 (2006).CrossRefGoogle Scholar
Kuma, H., Jinde, J., Kawamura, M., SID Intl. Symp. Dig. Tech. Papers 38, 1504 (2007).CrossRefGoogle Scholar
Ricks, M., Vargas, J.R., Klubek, K.P., SID Intl. Symp. Dig. Tech. Papers 38, 830 (2007).CrossRefGoogle Scholar
Kondakov, D., SID Intl. Symp. Dig. Tech. Papers 39, 617 (2008).CrossRefGoogle Scholar
Baldo, M.A., O’Brien, D.F., You, Y., Shoustikov, A., Sibley, S., Thompson, M.E., Forrest, S.R., Nature 395, 151 (1998).CrossRefGoogle Scholar
Sasabe, H., Li, Y., Su, S., Takeda, T., Kido, J., Jpn. J. Appl. Phys. 46, 10 (2007).Google Scholar
Wang, Z.B., Helander, M.G., Qiu, J., Puzzo, D.P., Greiner, M.T., Hudson, Z.M., Wang, S., Liu, Z.W., Lu, Z.H., Nat. Photonics 5, 753 (2011).CrossRefGoogle Scholar
Yeh, S.J., Wu, M.F., Chen, C.T., Song, Y.H., Chi, Y., Ho, M.H., Hsu, S.F., Chen, C.H., Adv. Mater. 17, 285 (2005).CrossRefGoogle Scholar
Talapin, D.V., Lee, J.S., Kovalenko, M.V., Shevchenko, E.V., Chem. Rev. 110, 389 (2010).CrossRefGoogle Scholar
Alivisatos, A.P., Endeavour 21, 56 (1997).CrossRefGoogle Scholar
Klimov, V.I., Nanocrystal Quantum Dots (CRC Press, New York, 2010).Google Scholar
Brus, L., J. Phys. Chem. 90, 2555 (1986).CrossRefGoogle Scholar
Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
Murray, C.B., Kagan, C.R., Bawendi, M.G., Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
Colvin, V.L., Schlamp, M.C., Alivisatos, A.P., Nature 370, 354 (1994).CrossRefGoogle Scholar
Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.-J., Bawendi, M.G., Science 290, 314 (2000).CrossRefGoogle Scholar
Semonin, O.E., Luther, J.M., Choi, S., Chen, H.-Y., Gao, J., Nozik, A.J., Beard, M.C., Science 334, 1530 (2011).CrossRefGoogle Scholar
Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., Sargent, E.H., Nature 442, 180 (2006).CrossRefGoogle Scholar
Kim, T.-H., Cho, K.-S., Lee, E.K., Lee, S.J., Chae, J., Kim, J.W., Kim, D.H., Kwon, J.-Y., Amaratunga, G., Lee, S.Y., Choi, B.L., Kuk, Y., Kim, J.M., Kim, K., Nat. Photonics 5, 176 (2011).CrossRefGoogle Scholar
Kwak, J., Bae, W.K., Lee, D., Park, I., Lim, J., Park, M., Cho, H., Woo, H., Yoon, D.Y., Char, K., Lee, S., Lee, C., Nano Lett. 12, 2362 (2012).CrossRefGoogle Scholar
Mashford, B.S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., Steckel, J., Bulović, V., Bawendi, M., Coe-Sullivan, S., Kazlas, P.T., Nat. Photonics 7, 407 (2013).CrossRefGoogle Scholar
Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G., Jensen, K.F., Adv. Mater. 12, 1102 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
Jang, E., Jun, S., Jang, H., Lim, J., Kim, B., Kim, Y., Adv. Mater. 22, 3076 (2010).CrossRefGoogle Scholar
Woo, H., Lim, J., Lee, Y., Sung, J., Shin, H., Oh, J.M., Choi, M., Yoon, H., Bae, W.K., Char, K., J. Mater. Chem. C 1, 1983 (2013).CrossRefGoogle Scholar
Achermann, M., Petruska, M.A., Koleske, D.D., Crawford, M.H., Klimov, V.I., Nano Lett. 6, 1396 (2006).CrossRefGoogle Scholar
Achermann, M., Petruska, M.A., Kos, S., Smith, D.L., Koleske, D.D., Klimov, V.I., Nature 429, 642 (2004).CrossRefGoogle Scholar
Bae, W.K., Kwak, J., Park, J.W., Char, K., Lee, C., Lee, S., Adv. Mater. 21, 1690 (2009).CrossRefGoogle Scholar
Cho, K.-S., Lee, E.K., Joo, W.-J., Jang, E., Kim, T.-H., Lee, S.J., Kwon, S.-J., Han, J.Y., Kim, B.-K., Choi, B.L., Kim, J.M., Nat. Photonics 3, 341 (2009).CrossRefGoogle Scholar
Kim, T.-H., Cho, K.-S., Lee, E.K., Lee, S.J., Chae, J., Kim, J.W., Kim, D.H., Kwon, J.-Y., Amaratunga, G., Lee, S.Y., Choi, B.L., Kuk, Y., Kim, J.M., Kim, K., Nat. Photonics 5, 176 (2011).CrossRefGoogle Scholar
Bae, W.K., Kwak, J., Lim, J., Lee, D., Nam, M.K., Char, K., Lee, C., Lee, S., Nano Lett. 10, 2368 (2010).CrossRefGoogle Scholar
Caruge, J.M., Halpert, J.E., Wood, V., Bulović, V., Bawendi, M.G., Nat. Photonics 2, 247 (2008).CrossRefGoogle Scholar
Klimov, V.I., McBranch, D.W., Leatherdale, C.A., Bawendi, M.G., Phys. Rev. B 60, 13740 (1999).CrossRefGoogle Scholar
Jones, M., Lo, S.S., Scholes, G.D., Proc. Natl. Acad. Sci. U.S.A. 106, 3011 (2009).CrossRefGoogle Scholar
Luther, J.M., Pietryga, J.M., ACS Nano 7, 1845 (2013).CrossRefGoogle Scholar
Hines, M.A., Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P., J. Am. Chem. Soc. 119, 7019 (1997).CrossRefGoogle Scholar
Pietryga, J.M., Werder, D.J., Williams, D.J., Casson, J.L., Schaller, R.D., Klimov, V.I., Hollingsworth, J.A., J. Am. Chem. Soc. 130, 4879 (2008).CrossRefGoogle Scholar
Bae, W.K., Joo, J., Padilha, L.A., Won, J., Lee, D.C., Lin, Q., Koh, W.-K., Luo, H., Klimov, V.I., Pietryga, J.M., J. Am. Chem. Soc. 134, 20160 (2012).CrossRefGoogle Scholar
Talapin, D.V., Mekis, I., Götzinger, S., Kornowski, A., Benson, O., Weller, H., J. Phys. Chem. B 108, 18826 (2004).CrossRefGoogle Scholar
Xie, R., Kolb, U., Li, J., Basché, T., Mews, A., J. Am. Chem. Soc. 127, 7480 (2005).CrossRefGoogle Scholar
Bae, W.K., Char, K., Hur, H., Lee, S., Chem. Mater. 20, 531 (2008).CrossRefGoogle Scholar
Bae, W.K., Nam, M.K., Char, K., Lee, S., Chem. Mater. 20, 5307 (2008).CrossRefGoogle Scholar
Crooker, S.A., Hollingsworth, J.A., Tretiak, S., Klimov, V.I., Phys. Rev. Lett. 89, 186802 (2002).CrossRefGoogle Scholar
Kagan, C.R., Murray, C.B., Nirmal, M., Bawendi, M.G., Phys. Rev. Lett. 76, 1517 (1996).CrossRefGoogle Scholar
Achermann, M., Petruska, M.A., Crooker, S.A., Klimov, V.I., J. Phys. Chem. B 107, 13782 (2003).CrossRefGoogle Scholar
Crooker, S.A., Barrick, T., Hollingsworth, J.A., Klimov, V.I., Appl. Phys. Lett. 82, 2793 (2003).CrossRefGoogle Scholar
Pal, B.N., Ghosh, Y., Brovelli, S., Laocharoensuk, R., Klimov, V.I., Hollingsworth, J.A., Htoon, H., Nano Lett. 12, 331 (2011).CrossRefGoogle Scholar
Galland, C., Ghosh, Y., Steinbrück, A., Hollingsworth, J.A., Htoon, H., Klimov, V.I., Nat. Commun. 3, 908 (2012).CrossRefGoogle Scholar
Galland, C., Ghosh, Y., Steinbruck, A., Sykora, M., Hollingsworth, J.A., Klimov, V.I., Htoon, H., Nature 479, 203 (2011).CrossRefGoogle Scholar
Redmond, P.L., Brus, L.E., J. Phys. Chem. C 111, 14849 (2007).CrossRefGoogle Scholar
Padilha, L.A., Robel, I., Lee, D.C., Nagpal, P., Pietryga, J.M., Klimov, V.I., ACS Nano 5, 5045 (2011).CrossRefGoogle Scholar
McGuire, J.A., Sykora, M., Robel, I., Padilha, L.A., Joo, J., Pietryga, J.M., Klimov, V.I., ACS Nano 4, 6087 (2010).CrossRefGoogle Scholar
Fomenko, V., Nesbitt, D.J., Nano Lett. 8, 287 (2007).CrossRefGoogle Scholar
Hohng, S., Ha, T., J. Am. Chem. Soc. 126, 1324 (2004).CrossRefGoogle Scholar
Jin, S., Song, N., Lian, T., ACS Nano 4, 1545 (2010).CrossRefGoogle Scholar
Pietryga, J.M., Zhuravlev, K.K., Whitehead, M., Klimov, V.I., Schaller, R.D., Phys. Rev. Lett. 101, 217401 (2008).CrossRefGoogle Scholar
Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., Leatherdale, C.A., Bawendi, M.G., Science 287, 1011 (2000).CrossRefGoogle Scholar
Robel, I., Gresback, R., Kortshagen, U., Schaller, R.D., Klimov, V.I., Phys. Rev. Lett. 102, 177404 (2009).CrossRefGoogle Scholar
Bae, W.K., Padilha, L.A., Park, Y.-S., McDaniel, H., Robel, I., Pietryga, J.M., Klimov, V.I., ACS Nano 7, 3411 (2013).CrossRefGoogle Scholar
Baker, T.A., Rouge, J.L., Nesbitt, D.J., Mol. Phys. 107, 1867 (2009).CrossRefGoogle Scholar
Chen, Y., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., Hollingsworth, J.A., J. Am. Chem. Soc. 130, 5026 (2008).CrossRefGoogle Scholar
Cragg, G.E., Efros, A.L., Nano Lett. 10, 313 (2009).CrossRefGoogle Scholar
García-Santamaría, F., Brovelli, S., Viswanatha, R., Hollingsworth, J.A., Htoon, H., Crooker, S.A., Klimov, V.I., Nano Lett. 11, 687 (2011).CrossRefGoogle Scholar
García-Santamaría, F., Chen, Y., Vela, J., Schaller, R.D., Hollingsworth, J.A., Klimov, V.I., Nano Lett. 9, 3482 (2009).CrossRefGoogle Scholar
Jha, P.P., Guyot-Sionnest, P., ACS Nano 3, 1011 (2009).CrossRefGoogle Scholar
Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.-P., Dubertret, B., Nat. Mater. 7, 659 (2008).CrossRefGoogle Scholar
Park, Y.-S., Malko, A.V., Vela, J., Chen, Y., Ghosh, Y., García-Santamaría, F., Hollingsworth, J.A., Klimov, V.I., Htoon, H., Phys. Rev. Lett. 106, 187401 (2011).CrossRefGoogle Scholar
Qin, W., Guyot-Sionnest, P., ACS Nano 6, 9125 (2012).CrossRefGoogle Scholar
Wang, X., Ren, X., Kahen, K., Hahn, M.A., Rajeswaran, M., Maccagnano-Zacher, S., Silcox, J., Cragg, G.E., Efros, A.L., Krauss, T.D., Nature 459, 686 (2009).CrossRefGoogle Scholar
Zavelani-Rossi, M., Lupo, M.G., Tassone, F., Manna, L., Lanzani, G., Nano Lett. 10, 3142 (2010).CrossRefGoogle Scholar
Frantsuzov, P., Kuno, M., Janko, B., Marcus, R.A., Nat. Phys. 4, 519 (2008).CrossRefGoogle Scholar
Bae, W.K., Park, Y.-S., Lim, J., Lee, D., Padilha, L.A., McDaniel, H., Robel, I., Lee, C., Pietryga, J.M., Klimov, V.I., Arxiv 1307, 0760944 (2013).Google Scholar
Javaux, C., Mahler, B., Dubertret, B., Shabaev, A., Rodina, A.V., Efros, A.L., Yakovlev, D.R., Liu, F., Bayer, M., Camps, G., Biadala, L., Buil, S., Quelin, X., Hermier, J.P., Nat. Nanotechnol. 8, 206 (2013).CrossRefGoogle Scholar
McGuire, J.A., Sykora, M., Joo, J., Pietryga, J.M., Klimov, V.I., Nano Lett. 10, 2049 (2010).CrossRefGoogle Scholar
McGuire, J.A., Joo, J., Pietryga, J.M., Schaller, R.D., Klimov, V.I., Acc. Chem. Res. 41, 1810 (2008).CrossRefGoogle Scholar
Koh, W., Koposov, A.Y., Stewart, J.T., Pal, B.N., Robel, I., Pietryga, J.M., Klimov, V.I., Sci. Rep. (2013), doi 10.1038/srep02004.Google Scholar
Padilha, L.A., Bae, W.K., Klimov, V.I., Pietryga, J.M., Schaller, R.D., Nano Lett. 13, 925 (2013).CrossRefGoogle Scholar
Climente, J.I., Movilla, J.L., Planelles, J., Small 8, 754 (2012).CrossRefGoogle Scholar
Park, Y.-S., Bae, W.K., Padilha, L.A., Pietryga, J.M., Klimov, V.I., Arxiv 1307, 0760938 (2013).Google Scholar
Li, J.J., Wang, Y.A., Guo, W., Keay, J.C., Mishima, T.D., Johnson, M.B., Peng, X., J. Am. Chem. Soc. 125, 12567 (2003).CrossRefGoogle Scholar
Shirasaki, Y., Supran, G.J., Tisdale, W.A., Bulović, V., Phys. Rev. Lett. 110, 217403 (2013).CrossRefGoogle Scholar
Osovsky, R., Cheskis, D., Kloper, V., Sashchiuk, A., Kroner, M., Lifshitz, E., Phys. Rev. Lett. 102, 197401 (2009).CrossRefGoogle Scholar
Coe, S., Woo, W.-K., Bawendi, M., Bulović, V., Nature 420, 800 (2002).CrossRefGoogle Scholar
Mueller, A.H., Petruska, M.A., Achermann, M., Werder, D.J., Akhadov, E.A., Koleske, D.D., Hoffbauer, M.A., Klimov, V.I., Nano Lett. 5, 1039 (2005).CrossRefGoogle Scholar
Caruge, J.-M., Halpert, J.E., Bulović, V., Bawendi, M.G., Nano Lett. 6, 2991 (2006).CrossRefGoogle Scholar