Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:04:08.988Z Has data issue: false hasContentIssue false

Read sensor technology for ultrahigh density magnetic recording

Published online by Cambridge University Press:  09 February 2018

Tomoya Nakatani
Affiliation:
National Institute for Materials Science, Japan; nakatani.tomoya@nims.go.jp
Zheng Gao
Affiliation:
Recording Head Development Group, Western Digital Corporation, USA; zheng.gao@wdc.com
Kazuhiro Hono
Affiliation:
Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, Japan; kazuhiro.hono@nims.go.jp
Get access

Abstract

This article reviews progress in magnetoresistive (MR) read sensor technology for hard-disk drives (HDDs). MR reader technology has progressed from the anisotropic magnetoresistance sensor, to the current-in-plane giant magnetoresistive (CIP-GMR) sensor, to today’s current-perpendicular-to-plane (CPP) tunneling magnetoresistance (TMR) sensor. This evolution has driven the continuous growth of the areal density of HDDs from 2 Gbpsi (gigabits/in2) in early longitudinal recording to ∼1 Tbpsi (terabits/in2) currently in perpendicular magnetic recording. For further increases in the areal density, a transition to energy-assisted recording is expected in the near future. Further technical challenges for the read sensor technology toward 2 Tbpsi and then 5 Tbpsi areal densities are discussed based on recent promising experimental work on CPP-GMR using Heusler alloys, and CPP-GMR’s laterally expanded version, the lateral spin valve (LSV). To realize large MR output and narrow shield-to-shield spacing requirements for higher density recording, materials selection and optimization of interface structures of CPP-GMR and LSV devices are critical.

Type
Materials for Heat-Assisted Magnetic Recording
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maat, S., Marley, A.C., “Physics and Design of Hard Disk Drive Magnetic Recording Read Heads,” in Handbook of Spintronics, Xu, Y., Awschalom, D.D., Nitta, J., Eds. (Springer, The Netherlands, 2016), p. 977, https://link.springer.com/referenceworkentry/10.1007/978-94-007-7604-3_35-1.CrossRefGoogle Scholar
Advanced Storage Technology Consortium (ASTC) Technology Roadmap (2016), http://idema.org/?page_id=5868.Google Scholar
Takagishi, M., Yamada, K., Iwasaki, H., Fuke, H.N., Hashimoto, S., IEEE Trans. Magn. 46, 2086 (2010).CrossRefGoogle Scholar
Smith, N., Arnett, P., Appl. Phys. Lett. 78, 1448 (2001).CrossRefGoogle Scholar
Butler, W.H., Zhang, X.-G., Schulthess, T.C., MacLaren, J.M., Phys. Rev. B Condens. Matter 63, 054416 (2001).CrossRefGoogle Scholar
Mathon, J., Umerski, A., Phys. Rev. B Condens. Matter 63, 220403(R) (2001).CrossRefGoogle Scholar
Julliere, M., Phys. Lett. A 54, 225 (1975).CrossRefGoogle Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K., Nat. Mater. 3, 868 (2004).CrossRefGoogle Scholar
Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H., Nat. Mater. 3, 862 (2004).CrossRefGoogle Scholar
Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y., Ando, K., Appl. Phys. Lett. 86, 092502 (2005).CrossRefGoogle Scholar
Djayaprawira, D.D., Yuasa, S., J. Phys. D Appl. Phys. 40, R337 (2007).Google Scholar
Kodzuka, M., Ohkubo, T., Hono, K., Ikeda, S., Gan, H.D., Ohno, H., J. Appl. Phys. 111, 043913 (2012).CrossRefGoogle Scholar
Nagamine, Y., Maehara, H., Tsunekawa, K., Djayaprawira, D.D., Watanabe, N., Yuasa, S., Ando, K., Appl. Phys. Lett. 89, 162507 (2006).CrossRefGoogle Scholar
Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H., Appl. Phys. Lett. 93, 082508 (2008).CrossRefGoogle Scholar
Karthik, S.V., Takahashi, Y.K., Ohkubo, T., Hono, K., Ikeda, S., Ohno, H., J. Appl. Phys. 106, 023920 (2009).CrossRefGoogle Scholar
Lee, Y.M., Hayakawa, J., Ikeda, S., Matsukura, F., Ohno, H., Appl. Phys. Lett. 90, 212507 (2007).CrossRefGoogle Scholar
Kitada, T., Nakamura, K., Tanaka, Y., Furukawa, S., Hatano, T., “Ultra-Low Resistance Area in MgO-Based MTJs (>100% at 0.3 Ωμm2) Study for 2Tbit/inch2 Read Head Application,” presented at the 59th Annual Magnetism and Magnetic Materials (MMM) Conference (AIP Publishing/Magnetics Society of IEEE/American Physical Society), Honolulu, November 5, 2014, DE-02.100%+at+0.3+Ωμm2)+Study+for+2Tbit/inch2+Read+Head+Application,”+presented+at+the+59th+Annual+Magnetism+and+Magnetic+Materials+(MMM)+Conference+(AIP+Publishing/Magnetics+Society+of+IEEE/American+Physical+Society),+Honolulu,+November+5,+2014,+DE-02.>Google Scholar
Childress, J.R., Carey, M.J., Maat, S., Smith, N., Fontana, R.E., Druist, D., Carey, K., Katine, J.A., Robertson, N., Boone, T.D., Alex, M., Moore, J., Tsang, C.H., IEEE Trans. Magn. 44, 90 (2008).CrossRefGoogle Scholar
Valet, T., Fert, A., Phys. Rev. B Condens. Matter 48, 7099 (1993).CrossRefGoogle Scholar
Iwase, T., Sakuraba, Y., Bosu, S., Saito, K., Mitani, S., Takanashi, K., Appl. Phys. Express 2, 063003 (2009).CrossRefGoogle Scholar
Nakatani, T.M., Furubayashi, T., Kasai, S., Sukegawa, H., Takahashi, Y.K., Mitani, S., Hono, K., Appl. Phys. Lett. 96, 212501 (2010).CrossRefGoogle Scholar
Takahashi, Y.K., Srinivasan, A., Varaprasad, B., Rajanikanth, A., Hase, N., Nakatani, T.M., Kasai, S., Furubayashi, T., Hono, K., Appl. Phys. Lett. 98, 152501 (2011).CrossRefGoogle Scholar
Sakuraba, Y., Ueda, M., Miura, Y., Sato, K., Bosu, S., Saito, K., Shirai, M., Konno, T.J., Takanashi, K., Appl. Phys. Lett. 101, 252408 (2012).CrossRefGoogle Scholar
Miura, Y., Futatsukawa, K., Nakajima, S., Abe, K., Shirai, M., Phys. Rev. B Condens. Matter 84, 134432 (2011).CrossRefGoogle Scholar
Goripati, H.S., Furubayashi, T., Takahashi, Y.K., Hono, K., J. Appl. Phys. 113, 043901 (2013).CrossRefGoogle Scholar
Jung, J.W., Sakuraba, Y., Sasaki, T.T., Miura, Y., Hono, K., Appl. Phys. Lett. 108, 102408 (2016).CrossRefGoogle Scholar
Narisawa, H., Kubota, T., Takanashi, K., Appl. Phys. Express 8, 063008 (2015).CrossRefGoogle Scholar
Kubota, T., Ina, Y., Tsujikawa, M., Morikawa, S., Narisawa, H., Wen, Z., Shirai, M., Takanashi, K., J. Phys. D Appl. Phys. 50, 014004 (2017).CrossRefGoogle Scholar
Carey, M.J., Maat, S., Chandrashekariaih, S., Katine, J.A., Chen, W., York, B., Childress, J.R., J. Appl. Phys. 109, 093912 (2011).CrossRefGoogle Scholar
Cheng, S.F., Nadgorny, B., Bussmann, K., Carpenter, E.E., Das, B.N., Trotter, G., Raphael, M.P., Harris, V.G., IEEE Trans. Magn. 37, 2178 (2001).Google Scholar
Read, J.C., Nakatani, T.M., Smith, N., Choi, Y.-S., York, B.R., Brinkman, E., Childress, J.R., J. Appl. Phys. 118, 043907 (2015).CrossRefGoogle Scholar
Page, M.R., Nakatani, T.M., Stewart, D.A., York, B.R., Read, J.C., Choi, Y.-S., Childress, J.R., J. Appl. Phys. 119, 153903 (2016).CrossRefGoogle Scholar
Choi, Y., Nakatani, T., Read, J.C., Carey, M.J., Stewart, D.A., Childress, J.R., Appl. Phys. Express 10, 013006 (2017).CrossRefGoogle Scholar
Nakatani, T., Mihajlović, G., Read, J.C., Choi, Y., Childress, J.R., Appl. Phys. Express 8, 093003 (2015).CrossRefGoogle Scholar
Nakatani, T., Li, S., Sakuraba, Y., Furubayashi, T., Hono, K., IEEE Trans. Magn. (2017), doi:10.1109/TMAG.2017.2753221.Google Scholar
Shimazawa, K., Tsuchiya, Y., Mizuno, T., Hara, S., Chou, T., Miyauchi, D., Machita, T., Ayukawa, T., Ichiki, T., Noguchi, K., IEEE Trans. Magn. 46, 1487 (2010).CrossRefGoogle Scholar
Iwasaki, H., Hashimoto, S., Shirotori, S., Takagishi, M., Kasai, S., “CPP-GMR Using Continuous MgAlCu-O Spacer with Low RA and High MR Ratio,” presented at the 13th Joint MMM-Intermag Conference (2016), EH-01.Google Scholar
Nakatani, T., Sasaki, T.T., Li, S., Sakuraba, Y., Furubayashi, T., Hono, K., “Layer Thickness Effects and Microstructure of CPP-GMR Spin-Valves with Ag/InZnO/Zn Conductive Oxide-Based Spacer Layers,” presented at the 2017 Intermag Conference (2017), AQ-07.Google Scholar
Fukuzawa, H., Yuasa, H., Hashimoto, S., Koi, K., Iwasaki, H., Takagishi, M., Tanaka, Y., Sahashi, M., IEEE Trans. Magn. 40, 2236 (2004).CrossRefGoogle Scholar
Jedema, F.J., Filip, A.T., van Wees, B.J., Nature 410, 345 (2001).CrossRefGoogle Scholar
Jedema, F.J., Heersche, H.B., Filip, A.T., Baselmans, J.J.A., van Wees, B.J., Nature 416, 713 (2002).CrossRefGoogle Scholar
Takahashi, Y.K., Kasai, S., Hirayama, S., Mitani, S., Hono, K., Appl. Phys. Lett. 100, 052405 (2012).CrossRefGoogle Scholar
Shirotori, S., Hashimoto, S., Takagishi, M., Kamiguchi, Y., Iwasaki, H., Appl. Phys. Express 8, 023103 (2015).CrossRefGoogle Scholar
Mukaiyama, K., Kasai, S., Takahashi, Y., Kondou, K., Otani, Y., Mitani, S., Hono, K., Appl. Phys. Express 10, 013008 (2017).CrossRefGoogle Scholar