Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:53:17.780Z Has data issue: false hasContentIssue false

Quantum materials for thermoelectricity

Published online by Cambridge University Press:  09 March 2018

Johannes Gooth
Affiliation:
Max Planck Institute for Chemical Physics of Solids, Germany; Harvard University, USA; johannes.gooth@cpfs.mpg.de
Gabi Schierning
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Germany; g.schierning@ifw-dresden.de
Claudia Felser
Affiliation:
Max Planck Institute for Chemical Physics of Solids, Germany; claudia.felser@cpfs.mpg.de
Kornelius Nielsch
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Germany; k.nielsch@ifw-dresden.de
Get access

Abstract

Research in thermoelectric (TE) quantum structures was greatly propelled by the prediction in the early 1990s of a significant boost in TE efficiency by quantum size effects. Recently, research interest has shifted from quantum size effects in conventional semiconductors toward new types of quantum materials (e.g., topological insulators [TIs], Weyl and Dirac semimetals) characterized by their nontrivial electronic topology. Bi2Te3, Sb2Te3, and Bi2Se3, established TE materials, are also TIs exhibiting a bulk bandgap and highly conductive and robust gapless surface states. The signature of the nontrivial electronic band structure on TE transport properties can be best verified in transport experiments using nanowires and thin films. However, even in nanograined bulk, the typical peculiarities in the transport properties of TIs can be seen. Finally, the remarkable transport properties of Dirac and Weyl semimetals are discussed.

Type
Materials for Energy Harvesting
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., Gogna, P., Adv. Mater. 19 (8), 1043 (2007).CrossRefGoogle Scholar
Nielsch, K., Bachmann, J., Kimling, J., Böttner, H., Adv. Energy Mater. 1 (5), 713 (2011).CrossRefGoogle Scholar
Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G., Adv. Mater. 22 (36), 3970 (2010).CrossRefGoogle Scholar
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B Condens. Matter 47 (19), 12727 (1993).CrossRefGoogle Scholar
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B Condens. Matter 47 (24), 16631 (1993).CrossRefGoogle Scholar
Seo, J., Roushan, P., Beidenkopf, H., Hor, Y.S., Cava, R.J., Yazdani, A., Nature 466 (7304), 343 (2010).CrossRefGoogle Scholar
Buchenau, S., Sergelius, P., Wiegand, C., Bäßler, S., Zierold, R., Shin, H.S., Rübhausen, M., Gooth, J., Nielsch, K., 2D Mater. 4 (1), 015004 (2017).CrossRefGoogle Scholar
Gooth, J., Hamdou, B., Dorn, A., Zierold, R., Nielsch, K., Appl. Phys. Lett. 104, 243115 (2014), https://doi.org/10.1063/1.4883887.CrossRefGoogle Scholar
Zhang, H., Liu, C.X., Qi, X.L., Dai, X., Fang, Z., Zhang, S.C., Nat. Phys. 5 (6), 438 (2009).CrossRefGoogle Scholar
Heremans, J.P., Cava, R.J., Samarth, N., Nat. Rev. Mater. 2, 17049 (2017).CrossRefGoogle Scholar
Xu, N., Xu, Y., Zhu, J., NPJ Quantum Mater. 2 (1), 51 (2017).CrossRefGoogle Scholar
Zhou, J., Jin, C., Seol, J.H., Li, X., Shi, L., Appl. Phys. Lett. 87 (13), 1 (2005).Google Scholar
Chen, C.L., Chen, Y.Y., Lin, S.J., Ho, J.C., Lee, P.C., Chen, C.D., Harutyunyan, S.R., J. Phys. Chem. C 114 (8), 3385 (2010).CrossRefGoogle Scholar
Snyder, G.J., Toberer, E.S., Nat. Mater. 7 (2), 105 (2008).CrossRefGoogle Scholar
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P., Nature 451 (7175), 163 (2008).CrossRefGoogle Scholar
Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R., Nature 451 (7175), 168 (2008).CrossRefGoogle Scholar
Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., Fleurial, J.-P., Adv. Mater. 19 (15), 2445 (2009).Google Scholar
Schierning, G., Phys. Status Solidi A 211 (6), 1235 (2014).CrossRefGoogle Scholar
Liu, L., Chen, X., J. Appl. Phys. 107 (3), 033501 (2010).CrossRefGoogle Scholar
Karg, S.F., Troncale, V., Drechsler, U., Mensch, P., Das Kanungo, P., Schmid, H., Schmidt, V., Gignac, L., Riel, H., Gotsmann, B., Nanotechnology 25 (30), 05702 (2014).CrossRefGoogle Scholar
Zhou, F., Moore, A.L., Bolinsson, J., Persson, A., Fröberg, L., Pettes, M.T., Kong, H., Rabenberg, L., Caroff, P., Stewart, D.A., Mingo, N., Dick, K.A., Samuelson, L., Linke, H., Shi, L., Phys. Rev. B Condens. Matter 83 (20), 205416 (2011).CrossRefGoogle Scholar
Gooth, J., Gluschke, J.G., Zierold, R., Leijnse, M., Linke, H., Nielsch, K., Semicond. Sci. Technol. 30 (1), 015015 (2015).CrossRefGoogle Scholar
Hamdou, B., Gooth, J., Dorn, A., Pippel, E., Nielsch, K., Appl. Phys. Lett. 103 (19), 193107 (2013).CrossRefGoogle Scholar
Hinsche, N.F., Zastrow, S., Gooth, J., Pudewill, L., Zierold, R., Rittweger, F., Rauch, T., Henk, J., Nielsch, K., Mertig, I., ACS Nano 9 (4), 4406 (2015).CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z., Science 320 (5876), 634 (2008).CrossRefGoogle Scholar
Sun, G.L., Li, L.L., Qin, X.Y., Li, D., Zou, T.H., Xin, H.X., Ren, B.J., Zhang, J., Li, Y.Y., Li, X.J., Appl. Phys. Lett. 106 (5), 053102 (2015).CrossRefGoogle Scholar
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z., Nat. Phys. 5 (6), 398 (2009).CrossRefGoogle Scholar
Tanaka, Y., Sato, T., Nakayama, K., Souma, S., Takahashi, T., Ren, Z., Novak, M., Segawa, K., Ando, Y., Phys. Rev. B Condens. Matter 87 (15), 155105 (2013).CrossRefGoogle Scholar
Liang, T., Gibson, Q., Xiong, J., Hirschberger, M., Koduvayur, S.P., Cava, R.J., Ong, N.P., Nat. Commun. 4, 2696 (2013).CrossRefGoogle Scholar
Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J., Science 321, 554 (2008).CrossRefGoogle Scholar
Pei, Y., Gibbs, Z.M., Gloskovskii, A., Balke, B., Zeier, W.G., Snyder, G.J., Adv. Energy Mater. 4 (13), 1400486 (2014).CrossRefGoogle Scholar
Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G., Nature 508 (7496), 373 (2014).CrossRefGoogle Scholar
Li, H., He, H., Lu, H.Z., Zhang, H., Liu, H., Ma, R., Fan, Z., Shen, S.Q., Wang, J., Nat. Commun. 7, 10735 (2016).Google Scholar
Moll, P.J.W., Nair, N.L., Helm, T., Potter, A.C., Kimchi, I., Vishwanath, A., Analytis, J.G., Nature 535 (7611), 266 (2016).CrossRefGoogle Scholar
Xiong, J., Kushwaha, S.K., Liang, T., Krizan, J.W., Hirschberger, M., Wang, W., Cava, R.J., Ong, N.P., Science 350 (6259), 413 (2015).CrossRefGoogle Scholar
Shekhar, C., Nayak, A.K., Sun, Y., Schmidt, M., Nicklas, M., Leermakers, I., Zeitler, U., Skourski, Y., Wosnitza, J., Liu, Z., Chen, Y., Schnelle, W., Borrmann, H., Grin, Y., Felser, C., Yan, B., Nat. Phys. 11 (8), 645 (2015).CrossRefGoogle Scholar
Sergelius, P., Gooth, J., Bäßler, S., Zierold, R., Wiegand, C., Niemann, A., Reith, H., Shekhar, C., Felser, C., Yan, B., Nielsch, K., Sci. Rep. 6, 33859 (2016).CrossRefGoogle Scholar
Xu, S.Y., Alidoust, N., Belopolski, I., Yuan, Z., Bian, G., Chang, T.R., Zheng, H., Strocov, V.N., Sanchez, D.S., Chang, G., Zhang, C., Mou, D., Wu, Y., Huang, L., Lee, C.C., Huang, S.M., Wang, B., Bansil, A., Jeng, H.T., Neupert, T., Kaminski, A., Lin, H., Jia, S., Hasan, M.Z., Nat. Phys. 11 (9), 748 (2015).CrossRefGoogle Scholar
Niemann, A.C., Gooth, J., Wu, S.C., Bäßler, S., Sergelius, P., Hühne, R., Rellinghaus, B., Shekhar, C., Süß, V., Schmidt, M., Felser, C., Yan, B., Nielsch, K., Sci. Rep. 7, 43394 (2017).CrossRefGoogle Scholar
Shin, D., Lee, Y., Sasaki, M., Jeong, Y.H., Weickert, F., Betts, J.B., Kim, H.-J., Kim, K.-S., Kim, J., Nat. Mater. 16 (11), 1096 (2017).CrossRefGoogle Scholar
Kim, H.-J., Kim, K.-S., Wang, J.F., Sasaki, M., Satoh, N., Ohnishi, A., Kitaura, M., Yang, M., Li, L., Phys. Rev. Lett. 111 (24), 246603 (2013).CrossRefGoogle Scholar
Peng, B., Zhang, H., Shao, H., Lu, H., Zhang, D.W., Zhu, H., Nano Energy 30, 225 (2016).CrossRefGoogle Scholar
Gooth, J., Niemann, A.C., Meng, T., Grushin, A.G., Landsteiner, K., Gotsmann, B., Menges, F., Schmidt, M., Shekhar, C., Süß, V., Hühne, R., Rellinghaus, B., Felser, C., Yan, B., Nielsch, K., Nature 547 (7663), 324 (2017).CrossRefGoogle Scholar
Stockert, U., Dos Reis, R.D., Ajeesh, M.O., Watzman, S.J., Schmidt, M., Shekhar, C., Heremans, J.P., Felser, C., Baenitz, M., Nicklas, M., J. Phys. Condens. Matter 29, (32), 325701 (2017).CrossRefGoogle Scholar
Hosseini, T., Yavarishad, N., Alward, J., Kouklin, N., Gajdardziska-Josifovska, M., Adv. Electron. Mater. 2 (1), 1500319 (2016).CrossRefGoogle Scholar
Jia, Z., Li, C., Li, X., Shi, J., Liao, Z., Yu, D., Wu, X., Nat. Commun. 7, 13013 (2016).CrossRefGoogle Scholar
Zhang, C., Zhou, T., Liang, S., Cao, J., Yuan, X., Liu, Y., Shen, Y., Wang, Q., Zhao, J., Yang, Z., Xiu, F., Chin. Phys. B 25 (1), 017202 (2015).CrossRefGoogle Scholar
Zhou, T., Zhang, C., Zhang, H., Xiu, F., Yang, Z., Inorg. Chem. Front. 3 (12), 1637 (2016).CrossRefGoogle Scholar
Lundgren, R., Laurell, P., Fiete, G.A., Phys. Rev. B Condens. Matter 90 (16), 165115 (2014).CrossRefGoogle Scholar
Huang, X., Zhao, L., Long, Y., Wang, P., Chen, D., Yang, Z., Liang, H., Xue, M., Weng, H., Fang, Z., Dai, X., Chen, G., Phys. Rev. X 5 (3), 031023 (2015).Google Scholar
Hirschberger, M., Kushwaha, S., Wang, Z., Gibson, Q., Liang, S., Belvin, C.A., Bernevig, B.A., Cava, R.J., Ong, N.P., Nat. Mater. 15 (11), 1161 (2016).CrossRefGoogle Scholar
Landsteiner, K., Megías, E., Pena-Benitez, F., Phys. Rev. Lett. 107 (2), 021601 (2011).CrossRefGoogle Scholar
Lucas, A., Davison, R.A., Sachdev, S., Proc. Natl. Acad. Sci. U.S.A. 113 (34), 9463 (2016).CrossRefGoogle Scholar
Witten, E., Commun. Math. Phys. 100 (2), 197 (1985).CrossRefGoogle Scholar
Sharma, G., Goswami, P., Tewari, S., Phys. Rev. B Condens. Matter 93 (3), 035116 (2016).CrossRefGoogle Scholar
Liang, T., Lin, J., Gibson, Q., Gao, T., Hirschberger, M., Liu, M., Cava, R.J., Ong, N.P., Phys. Rev. Lett. 118 (13), 136601 (2017).CrossRefGoogle Scholar
Ferreiros, Y., Zyuzin, A.A., Bardarson, J.H., Phys. Rev. B Condens. Matter 96 (11), 115202 (2017).CrossRefGoogle Scholar