Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T10:57:57.309Z Has data issue: false hasContentIssue false

Novel superhard nanopolycrystalline materials synthesized by direct conversion sintering under high pressure and high temperature

Published online by Cambridge University Press:  10 October 2017

Hitoshi Sumiya*
Affiliation:
Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd., Japan; sumiya@sei.co.jp
Get access

Abstract

Single-phase (binderless) superhard nanopolycrystalline diamond and cubic boron nitride (cBN) consisting of fine grains of several tens of nanometers without any secondary phases or binder materials have been developed. These nanopolycrystalline materials are synthesized by direct conversion sintering under ultrahigh pressure and high temperature with optimized and precisely controlled starting materials and synthesis conditions. Their hardness surpasses that of single crystals and conventional sintered compacts and is free from the characteristic cleavage and anisotropy of single crystals. They are especially promising materials for next-generation high-precision, high-efficiency cutting tools and wear-resistant tools. The nanopolycrystalline diamond has excellent potential for precision cutting of nonferrous hard materials, including cemented carbide and hard ceramics, as does the nanopolycrystalline cBN for cutting ferrous hard metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sumiya, H., SEI Tech. Rev. 74, 15 (2012).Google Scholar
Sumiya, H., Harano, K., Diam. Relat. Mater. 24, 44 (2012).Google Scholar
Harano, K., Satoh, T., Sumiya, H., Diam. Relat. Mater. 24, 78 (2012).CrossRefGoogle Scholar
Sumiya, H., Uesaka, S., Satoh, S., J. Mater. Sci. 35, 1181 (2000).Google Scholar
Uesaka, S., Sumiya, H., Itozaki, H., Shiraishi, J., Tomita, K., Nakai, T., SEI Tech. Rev. 50, 34 (2000).Google Scholar
Sumiya, H., Harano, K., Ishida, Y., Diam. Relat. Mater. 41, 14 (2014).Google Scholar
Bundy, F.P., Science 137, 1057 (1962).Google Scholar
Wakatsuki, M., Ichinose, K., Aoki, T., Jpn. J. Appl. Phys. 11, 578 (1972).CrossRefGoogle Scholar
Naka, S., Horii, K., Takeda, Y., Hanawa, T., Nature 259, 38 (1976).Google Scholar
Irifune, T., Kurio, A., Sakamoto, S., Inoue, T., Sumiya, H., Nature 421, 599 (2003).Google Scholar
Dubrovinskaia, N., Dubrovinsky, L., Crichton, W., Langenhorst, F., Richter, A., Appl. Phys. Lett. 87, 083106 (2005).CrossRefGoogle Scholar
Bundy, F.P., Wentorf, R.H. Jr., J. Chem. Phys. 38, 1144 (1963).Google Scholar
Wakatsuki, M., Ichinose, K., Aoki, T., Mater. Res. Bull. 7, 999 (1972).Google Scholar
Corrigan, F.R., Bundy, F.P., J. Chem. Phys. 63, 3812 (1975).Google Scholar
Akaishi, M., Satoh, T., Ishii, M., Taniguchi, T., Yamaoka, S., J. Mater. Sci. Lett. 12, 1883 (1993).Google Scholar
Dubrovinskaia, N., Solozhenko, V.L., Miyajima, N., Dmitriev, V., Kurakevych, O.O., Dubrovinsky, L., Appl. Phys. Lett. 90, 101912 (2007).Google Scholar
Sumiya, H., J. Soc. Mater. Sci. Japan 61, 412 (2012).Google Scholar
Sumiya, H., Yusa, H., Inoue, T., Ofuji, H., Irifune, T., High Press. Res. 26, 63 (2006).CrossRefGoogle Scholar
Sumiya, H., Irifune, T., J. Mater. Res. 22, 2345 (2007).Google Scholar
Sumiya, H., Harano, K., Ishida, Y., Diam. Relat. Mater. 48, 47 (2014).Google Scholar
Sumiya, H., Irifune, T., Kurio, A., Sakamoto, S., Inoue, T., J. Mater. Sci. 39, 445 (2004).Google Scholar
Ishida, Y., Sumiya, H., Proc. 2012 Powder Metall. World Congr. Exhib. (2012), p. 18D-T13-28.Google Scholar
Harano, K., Arimoto, K., Ishida, Y., Sumiya, H., Adv. Mater. Res. 1017, 389 (2014).CrossRefGoogle Scholar
Sumiya, H., Irifune, T., SEI Tech. Rev. 59, 52 (2005).Google Scholar
Sumiya, H., Harano, K., Murakami, D., SEI Tech. Rev. 75, 18 (2012).Google Scholar