Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T00:56:02.891Z Has data issue: false hasContentIssue false

Multifunctional, self-assembled oxide nanocomposite thin films and devices

Published online by Cambridge University Press:  04 September 2015

Wenrui Zhang
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, USA; zhwrican@tamu.edu
Ramamoorthy Ramesh
Affiliation:
Department of Materials Science and Engineering and Department of Physics, University of California, Berkeley, USA; and Lawrence Berkeley National Laboratory, USA; rramesh@berkeley.edu
Judith L. MacManus-Driscoll
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, UK; jld35@cam.ac.uk
Haiyan Wang
Affiliation:
Department of Electrical and Computer Engineering and Department of Materials Science and Engineering, Texas A&M University, USA; wangh@ece.tamu.edu
Get access

Abstract

Complex oxides provide an ideal playground for exploring the interplay among the fundamental degrees of freedom: structural (lattice), electronic (orbital and charge), and magnetic (spin). In thin films and heterostructures, new states of matter can emerge as a consequence of such interactions. Over the past decade, the ability to synthesize self-assembled nanocomposite thin films of metal oxides has provided another pathway for creating new interfaces and, thus, new physical phenomena. In this article, we describe examples of such materials systems explored to date and highlight the fascinating multifunctional properties achieved. These include enhanced flux pinning in superconductors, strain-enhanced ferroelectricity, strain- and charge-coupled magnetoelectrics, tunable magnetotransport, novel electrical/ionic transport, memristors, and tunable dielectrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Imada, M., Fujimori, A., Tokura, Y., Rev. Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
Dagotto, E., Science 309, 257 (2005).Google Scholar
Ramesh, R., Spaldin, N.A., Nat. Mater. 6, 21 (2007).CrossRefGoogle Scholar
Eerenstein, W., Mathur, N.D., Scott, J.F., Nature 442, 759 (2006).Google Scholar
Cheong, S.-W., Mostovoy, M., Nat. Mater. 6, 13 (2007).CrossRefGoogle Scholar
Yamada, H., Ogawa, Y., Ishii, Y., Sato, H., Kawasaki, M., Akoh, H., Tokura, Y., Science 305, 646 (2004).Google Scholar
Mannhart, J., Schlom, D.G., Science 327, 1607 (2010).CrossRefGoogle Scholar
Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., Tokura, Y., Nat. Mater. 11, 103 (2012).Google Scholar
Ohtomo, A., Hwang, H.Y., Nature 427, 423 (2004).Google Scholar
Brinkman, A., Huijben, M., van Zalk, M., Huijben, J., Zeitler, U., Maan, J.C., van der Wiel, W.G., Rijnders, G., Blank, D.H.A., Hilgenkamp, H., Nat. Mater. 6, 493 (2007).Google Scholar
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., Lowndes, D.H., Nature 433, 395 (2005).Google Scholar
Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Pennycook, S.J., Santamaria, J., Science 321, 676 (2008).Google Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R., Science 303, 661 (2004).Google Scholar
MacManus-Driscoll, J.L., Adv. Funct. Mater. 20, 2035 (2010).Google Scholar
Chen, A., Bi, Z., Jia, Q., MacManus-Driscoll, J.L., Wang, H., Acta Mater. 61, 2783 (2013).Google Scholar
Zhang, W., Chen, A., Bi, Z., Jia, Q., MacManus-Driscoll, J.L., Wang, H., Curr. Opin. Solid State Mater. Sci. 18, 6 (2014).Google Scholar
Liu, H.-J., Liang, W.-I., Chu, Y.-H., Zheng, H., Ramesh, R., MRS Commun. 4, 31 (2014).Google Scholar
MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., Peterson, D.E., Nat. Mater. 3, 439 (2004).Google Scholar
Gutierrez, J., Llordes, A., Gazquez, J., Gibert, M., Roma, N., Ricart, S., Pomar, A., Sandiumenge, F., Mestres, N., Puig, T., Obradors, X., Nat. Mater. 6, 367 (2007).CrossRefGoogle Scholar
Llordés, A., Palau, A., Gázquez, J., Coll, M., Vlad, R., Pomar, A., Arbiol, J., Guzmán, R., Ye, S., Rouco, V., Sandiumenge, F., Ricart, S., Puig, T., Varela, M., Chateigner, D., Vanacken, J., Gutiérrez, J., Moshchalkov, V., Deutscher, G., Magen, C., Obradors, X., Nat. Mater. 11, 329 (2012).Google Scholar
Harrington, S., Zhai, J., Denev, S., Gopalan, V., Wang, H., Bi, Z., Redfern, S.A.T., Baek, S.-H., Bark, C.W., Eom, C.-B., Jia, Q., Vickers, M.E., MacManus-Driscoll, J.L., Nat. Nanotech. 6, 491 (2011).Google Scholar
Khatkhatay, F., Chen, A., Lee, J.H., Zhang, W., Abdel-Raziq, H., Wang, H., ACS Appl. Mater. Interfaces 5, 12541 (2013).Google Scholar
Fix, T., Choi, E.-M., Robinson, J.W.A., Lee, S.B., Chen, A., Prasad, B., Wang, H., Blamire, M.G., MacManus-Driscoll, J.L., Nano Lett. 13, 5886 (2013).Google Scholar
Choi, E.-M., Weal, E., Bi, Z., Wang, H., Kursumovic, A., Fix, T., Blamire, M.G., MacManus-Driscoll, J.L., Appl. Phys. Lett. 102, 012905 (2013).Google Scholar
Wang, Z., Li, Y., Viswan, R., Hu, B., Harris, V.G., Li, J., Viehland, D., ACS Nano 7, 3447 (2013).Google Scholar
Zhang, W., Jian, J., Chen, A., Jiao, L., Khatkhatay, F., Li, L., Chu, F., Jia, Q., MacManus-Driscoll, J.L., Wang, H., Appl. Phys. Lett. 104, 062402 (2014).Google Scholar
Weal, E., Patnaik, S., Bi, Z., Wang, H., Fix, T., Kursumovic, A., MacManus Driscoll, J.L., Appl. Phys. Lett. 97, 153121 (2010).Google Scholar
Chen, A., Bi, Z., Tsai, C.-F., Lee, J., Su, Q., Zhang, X., Jia, Q., MacManus-Driscoll, J.L., Wang, H., Adv. Funct. Mater. 21, 2423 (2011).Google Scholar
Zhang, W., Chen, A., Khatkhatay, F., Tsai, C.-F., Su, Q., Jiao, L., Zhang, X., Wang, H., ACS Appl. Mater. Interfaces 5, 3995 (2013).Google Scholar
Hsieh, Y.-H., Liou, J.-M., Huang, B.-C., Liang, C.-W., He, Q., Zhan, Q., Chiu, Y.-P., Chen, Y.-C., Chu, Y.-H., Adv. Mater. 24, 4564 (2012).Google Scholar
Yoon, J., Cho, S., Kim, J.-H., Lee, J., Bi, Z., Serquis, A., Zhang, X., Manthiram, A., Wang, H., Adv. Funct. Mater. 19, 3868 (2009).Google Scholar
Lee, S., Sangle, A., Lu, P., Chen, A., Zhang, W., Lee, J.S., Wang, H., Jia, Q., MacManus-Driscoll, J.L., Adv. Mater. 26, 6284 (2014).Google Scholar
MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., Jia, Q., Nat. Mater. 7, 314 (2008).CrossRefGoogle Scholar
Lee, O., Harrington, S.A., Kursumovic, A., Defay, E., Wang, H., Bi, Z., Tsai, C.-F., Yan, L., Jia, Q., MacManus-Driscoll, J.L., Nano Lett. 12, 4311 (2012).Google Scholar
Liu, H.-J., Chen, L.-Y., He, Q., Liang, C.-W., Chen, Y.-Z., Chien, Y.-S., Hsieh, Y.-H., Lin, S.-J., Arenholz, E., Luo, C.-W., Chueh, Y.-L., Chen, Y.-C., Chu, Y.-H., ACS Nano 6, 6952 (2012).Google Scholar
Zheng, H., Straub, F., Zhan, Q., Yang, P.L., Hsieh, W.K., Zavaliche, F., Chu, Y.H., Dahmen, U., Ramesh, R., Adv. Mater. 18, 2747 (2006).Google Scholar
Zhao, R., Li, W., Lee, J.H., Choi, E.M., Liang, Y., Zhang, W., Tang, R., Wang, H., Jia, Q., MacManus-Driscoll, J.L., Yang, H., Adv. Funct. Mater. 24, 5240 (2014).Google Scholar
Aimon, N.M., Choi, H.K., Sun, X.Y., Kim, D.H., Ross, C.A., Adv. Mater. 26, 3063 (2014).Google Scholar
Zhu, Y., Liu, P., Yu, R., Hsieh, Y.-H., Ke, D., Chu, Y.-H., Zhan, Q., Nanoscale 6, 5126 (2014).Google Scholar
Levin, I., Slutsker, J., Li, J., Tan, Z., Roytburd, A.L., Appl. Phys. Lett. 91, 062912 (2007).Google Scholar
Chen, A., Weigand, M., Bi, Z., Zhang, W., Lu, X., Dowden, P., MacManus-Driscoll, J.L., Wang, H., Jia, Q., Sci. Rep. 4, 5426 (2014).Google Scholar
Chang, W.S., Liu, H.-J., Tra, V.T., Chen, J.-W., Wei, T.-C., Tzeng, W.Y., Zhu, Y., Kuo, H.-H., Hsieh, Y.-H., Lin, J.-C., Zhan, Q., Luo, C.W., Lin, J.-Y., He, J.-H., Wu, C.L., Chu, Y.-H., ACS Nano 8, 6242 (2014).Google Scholar
Zhu, Y., Tsai, C.-F., Wang, J., Kwon, J.H., Wang, H., Varanasi, C.V., Burke, J., Brunke, L., Barnes, P.N., J. Mater. Res. 27, 1763 (2012).Google Scholar
Imai, A., Cheng, X., Xin, H.L., Eliseev, E.A., Morozovska, A.N., Kalinin, S.V., Takahashi, R., Lippmaa, M., Matsumoto, Y., Nagarajan, V., ACS Nano 7, 11079 (2013).Google Scholar
Mohaddes-Ardabili, L., Zheng, H., Ogale, S.B., Hannoyer, B., Tian, W., Wang, J., Lofland, S.E., Shinde, S.R., Zhao, T., Jia, Y., Salamanca-Riba, L., Schlom, D.G., Wuttig, M., Ramesh, R., Nat. Mater. 3, 533 (2004).CrossRefGoogle Scholar
Bonilla, F.J., Novikova, A., Vidal, F., Zheng, Y., Fonda, E., Demaille, D., Schuler, V., Coati, A., Vlad, A., Garreau, Y., Sauvage Simkin, M., Dumont, Y., Hidki, S., Etgens, V., ACS Nano 7, 4022 (2013).Google Scholar
Kang, B.S., Wang, H., MacManus-Driscoll, J.L., Li, Y., Jia, Q.X., Mihut, I., Betts, J.B., Appl. Phys. Lett. 88, 192514 (2006).Google Scholar
Chen, A., Zhang, W., Khatkhatay, F., Su, Q., Tsai, C.-F., Chen, L., Jia, Q.X., MacManus-Driscoll, J.L., Wang, H., Appl. Phys. Lett. 102, 093114 (2013).Google Scholar
Park, S., Horibe, Y., Asada, T., Wielunski, L.S., Lee, N., Bonanno, P.L., O’Malley, S.M., Sirenko, A.A., Kazimirov, A., Tanimura, M., Gustafsson, T., Cheong, S.W., Nano Lett. 8, 720 (2008).Google Scholar
Ni, Y., Rao, W., Khachaturyan, A.G., Nano Lett. 9, 3275 (2009).Google Scholar
Larbalestier, D., Gurevich, A., Feldmann, D.M., Polyanskii, A., Nature 414, 368 (2001).Google Scholar
Foltyn, S.R., Civale, L., MacManus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M., Nat. Mater. 6, 631 (2007).Google Scholar
MacManus-Driscoll, J.L., Harrington, S.A., Durrell, J.H., Ercolano, G., Wang, H., Lee, J.H., Tsai, C.F., Maiorov, B., Kursumovic, A., Wimbush, S.C., Supercond. Sci. Technol. 23, 034009 (2010).Google Scholar
Kaname, M., Paolo, M., Supercond. Sci. Technol. 23, 014001 (2010).Google Scholar
Wee, S.H., Zuev, Y.L., Cantoni, C., Goyal, A., Sci. Rep. 3, 2310 (2013).Google Scholar
Varanasi, C.V., Burke, J., Wang, H., Lee, J.H., Barnes, P.N., Appl. Phys. Lett. 93, 092501 (2008).Google Scholar
Sieger, M., Hänisch, J., Iida, K., Gaitzsch, U., Rodig, C., Schultz, L., Holzapfel, B., Hühne, R., J. Phys. Conf. Ser. 507, 022032 (2014).Google Scholar
Paolo, M., Kaname, M., Tomoya, H., Ataru, I., Masashi, M., Yutaka, Y., Shigeru, H., Ryusuke, K., Supercond. Sci. Technol. 21, 032002 (2008).Google Scholar
Harrington, S.A., Durrell, J.H., Maiorov, B., Wang, H., Wimbush, S.C., Kursumovic, A., Lee, J.H., MacManus-Driscoll, J.L., Supercond. Sci. Technol. 22, 022001 (2009).Google Scholar
Ercolano, G., Harrington, S.A., Wang, H., Tsai, C.F., MacManus-Driscoll, J.L., Supercond. Sci. Technol. 23, 022003 (2010).Google Scholar
Tsai, C.-F., Huang, J., Lee, J.-H., Khatkhatay, F., Chen, L., Chen, A., Su, Q., Wang, H., Physica C 510, 13 (2015).CrossRefGoogle Scholar
Huang, J., Tsai, C.-F., Chen, L., Jian, J., Khatkhatay, F., Yu, K., Wang, H., J. Appl. Phys. 115, 123902 (2014).Google Scholar
Chen-Fong, T., Li, C., Aiping, C., Khatkhatay, F., Wenrui, Z., Haiyan, W., IEEE Trans. Appl. Supercond. 23, 8001204 (2013).Google Scholar
Ercolano, G., Bianchetti, M., Wimbush, S.C., Harrington, S.A., Wang, H., Lee, J.H., MacManus-Driscoll, J.L., Supercond. Sci. Technol. 24, 095012 (2011).Google Scholar
Xu, A., Delgado, L., Khatri, N., Liu, Y., Selvamanickam, V., Abraimov, D., Jaroszynski, J., Kametani, F., Larbalestier, D.C., APL Mater. 2, 046111 (2014).Google Scholar
Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., Schlom, D.G., Nature 430, 758 (2004).Google Scholar
Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.-Q., Schlom, D.G., Eom, C.B., Science 306, 1005 (2004).Google Scholar
Schlom, D.G., Chen, L.-Q., Fennie, C.J., Gopalan, V., Muller, D.A., Pan, X., Ramesh, R., Uecker, R., MRS Bull. 39, 118 (2014).CrossRefGoogle Scholar
Li, Y.L., Chen, L.Q., Appl. Phys. Lett. 88, 072905 (2006).Google Scholar
Wu, H., Chai, G., Xu, B., Li, J., Zhang, Z., Appl. Phys. A 113, 155 (2013).Google Scholar
Kursumovic, A., Defay, E., Lee, O.J., Tsai, C.-F., Bi, Z., Wang, H., MacManus-Driscoll, J.L., Adv. Funct. Mater. 23, 5881 (2013).Google Scholar
Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., Sterianou, I., J. Mater. Sci. 44, 5102 (2009).Google Scholar
Yang, H., Wang, H., Yoon, J., Wang, Y., Jain, M., Feldmann, D.M., Dowden, P.C., MacManus-Driscoll, J.L., Jia, Q., Adv. Mater. 21, 3794 (2009).Google Scholar
Bi, Z., Lee, J.H., Yang, H., Jia, Q., MacManus-Driscoll, J.L., Wang, H., J. Appl. Phys. 106, 094309 (2009).Google Scholar
Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P.L., Hao, D., Ramesh, R., Nano Lett. 7, 1586 (2007).Google Scholar
Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G., J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
Yu, P., Chu, Y.-H., Ramesh, R., Mater. Today 15, 320 (2012).Google Scholar
Ramirez, A.P., J. Phys. Condens. Matter 9, 8171 (1997).Google Scholar
Hwang, H.Y., Cheong, S.W., Nature 389, 942 (1997).Google Scholar
Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., Sun, J.Z., Phys. Rev. B 54, R15629 (1996).Google Scholar
Chen, A., Zhang, W., Jian, J., Wang, H., Tsai, C.-F., Su, Q., Jia, Q., MacManus-Driscoll, J.L., J. Mater. Res. 28, 1707 (2013).Google Scholar
Hsieh, Y.-H., Strelcov, E., Liou, J.-M., Shen, C.-Y., Chen, Y.-C., Kalinin, S.V., Chu, Y.-H., ACS Nano 7, 8627 (2013).CrossRefGoogle Scholar
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., Nature 453, 80 (2008).CrossRefGoogle Scholar
Chua, L.O., Circuit Theory, IEEE Transactions 18, 507 (1971).Google Scholar
Sawa, A., Mater. Today 11, 28 (2008).CrossRefGoogle Scholar
Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., Nat. Nanotechnol. 3, 429 (2008).Google Scholar
Yang, J.J., Strukov, D.B., Stewart, D.R., Nat. Nanotechnol. 8, 13 (2013).Google Scholar
Cole, M.W., Nothwang, W.D., Hubbard, C., Ngo, E., Ervin, M., J. Appl. Phys. 93, 9218 (2003).CrossRefGoogle Scholar
Cole, M.W., Joshi, P.C., Ervin, M.H., Wood, M.C., Pfeffer, R.L., Thin Solid Films 374, 34 (2000).CrossRefGoogle Scholar
Kong, L.B., Li, S., Zhang, T.S., Zhai, J.W., Boey, F.Y.C., Ma, J., Prog. Mater Sci. 55, 840 (2010).Google Scholar
Seidel, J., Luo, W., Suresha, S.J., Nguyen, P.K., Lee, A.S., Kim, S.Y., Yang, C.H., Pennycook, S.J., Pantelides, S.T., Scott, J.F., Ramesh, R., Nat. Commun. 3, 799 (2012).Google Scholar
Lejman, M., Vaudel, G., Infante, I.C., Gemeiner, P., Gusev, V.E., Dkhil, B., Ruello, P., Nat. Commun. 5, 4301 (2014).Google Scholar
Baek, S.H., Jang, H.W., Folkman, C.M., Li, Y.L., Winchester, B., Zhang, J.X., He, Q., Chu, Y.H., Nelson, C.T., Rzchowski, M.S., Pan, X.Q., Ramesh, R., Chen, L.Q., Eom, C.B., Nat. Mater. 9, 309 (2010).Google Scholar
Chappert, C., Fert, A., Van Dau, F.N., Nat. Mater. 6, 813 (2007).CrossRefGoogle Scholar
Snyder, G.J., Toberer, E.S., Nat. Mater. 7, 105 (2008).Google Scholar
Zhang, W., Chen, A., Jian, J., Zhu, Y., Chen, L., Lu, P., Jia, Q., MacManus-Driscoll, J., Zhang, X., Wang, H., Nanoscale (2015), doi: 10.1039/C5NR03231H.Google ScholarPubMed
Aimon, N.M., Kim, D.H., Sun, X., Ross, C.A., ACS Appl. Mater. Interfaces 7, 2263 (2015).Google Scholar
Choi, H.K., Aimon, N.M., Kim, D.H., Sun, X.Y., Gwyther, J., Manners, I., Ross, C.A., ACS Nano 8, 9248 (2014).Google Scholar
Ning, X., Wang, Z., Zhang, Z., Adv. Funct. Mater. 24, 5393 (2014).Google Scholar
Li, Y., Wang, Z., Yao, J., Yang, T., Wang, Z., Hu, J.-M., Chen, C., Sun, R., Tian, Z., Li, J., Chen, L.-Q., Viehland, D., Nat. Commun. 6, 6680 (2015).Google Scholar
Kawasaki, J.K., Schultz, B.D., Lu, H., Gossard, A.C., Palmstrøm, C.J., Nano Lett. 13, 2895 (2013).Google Scholar
Lu, H., Ouellette, D.G., Preu, S., Watts, J.D., Zaks, B., Burke, P.G., Sherwin, M.S., Gossard, A.C., Nano Lett. 14, 1107 (2014).Google Scholar