Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:27:30.291Z Has data issue: false hasContentIssue false

Metamorphic transistors: Building blocks for hetero-integrated circuits

Published online by Cambridge University Press:  14 March 2016

Kenneth E. Lee
Affiliation:
Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore; kenneth.lee@smart.mit.edu
Eugene A. Fitzgerald
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, and Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, USA; eafitz@mit.edu
Get access

Abstract

Metamorphic epitaxy offers the possibility of growing devices on wafers composed of different materials that might be larger than the native bulk substrates for a potential cost-reduction of III–V components; this is especially important when native substrates with desired lattice constants are not available. This article reviews the concepts of metamorphic epitaxy of III–V compound semiconductor materials and examines how they have been applied to the development of advanced transistor devices. These metamorphic devices are expected to be a key enabler of future heterogeneous integrated circuits in which Si and III–V devices are monolithically integrated on a wafer scale using complementary metal oxide semiconductor-like process flows.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Riordan, M., Hoddeson, L., Herring, C., Rev. Mod. Phys. 71 (2), S336 (1999).Google Scholar
Moore, G.E., Proc. IEEE 86 (1), 82 (1998).Google Scholar
Zaknoune, M., Ardouin, M., Cordier, Y., Bollaert, S., Bonte, B., Theron, D., IEEE Electron Device Lett. 24 (12), 724 (2003).Google Scholar
Ng, G.I., Radhakrishnan, K., Wang, H., “Are We There Yet? – A Metamorphic HEMT and HBT Perspective,” presented at the 13th GaAs Symposium, Paris, France, October 3–4, 2005.Google Scholar
Zhu, D., McAleese, C., McLaughlin, K.K., Häberlen, M., Salcianu, C.O., Thrush, E.J., Kappers, M.J., Phillips, W.A., Lane, P., Wallis, D.J., Martin, T., Astles, M., Thomas, S., Pakes, A., Heuken, M., Humphreys, C.J., “GaN-Based LEDs Grown on 6-Inch Diameter Si (111) Substrates by MOVPE,” Proc. SPIE 7231, 723118 (San Jose, CA, 2009), doi: 10.1117/12.814919.Google Scholar
Hoke, W.E., Whelan, C.S., Lattice Engineering (Pan Stanford, Singapore, 2013).Google Scholar
Lee, K.E., Fitzgerald, E.A., J. Cryst. Growth 312, 250 (2010).Google Scholar
Quitoriano, N.J., Fitzgerald, E.A., J. Appl. Phys. 102, 033511 (2007).Google Scholar
Mori, M.J., Fitzgerald, E.A., J. Appl. Phys. 105, 013107 (2009).Google Scholar
Chen, P., Chua, S.J., Miao, Z.L., J. Cryst. Growth 273, 74 (2004).Google Scholar
Yang, L., Bulsara, M.T., Lee, K.E., Fitzgerald, E.A., J. Cryst. Growth 324, 103 (2011).Google Scholar
Lee, K.E., Fitzgerald, E.A., J. Appl. Phys. 106, 074911 (2009).Google Scholar
Semond, F., MRS Bull. 40, 412 (2015).Google Scholar
Dadgar, A., Phys. Status Solidi B 252 (5), 1063 (2015).Google Scholar
Fitzgerald, E.A., J. Vac. Sci. Technol. B 7, 782 (1989).Google Scholar
Waldron, N., Merckling, C., Teugels, L., Ong, P., Sebaai, F., Barla, K., Collaert, N., Thean, V.Y., Solid State Electron. 115B, 81 (2016).Google Scholar
Schmid, H., Borg, M., Moselund, K., Gignac, L., Breslin, C.M., Bruley, J., Cutaia, D., Riel, H., Appl. Phys. Lett. 106, 233101 (2015).Google Scholar
del Alamo, J.A., Antoniadis, D., Guo, A., Kim, D.H., Kim, T.W., Lin, J., Lu, W., Vardi, A., Zhao, X., “InGaAs MOSFETs for CMOS: Recent Advances in Process Technology,” presented at the International Electron Devices Meeting, Washington, DC, December 9–11, 2013.Google Scholar
Matocha, K., Chow, T.P., Gutmann, R.J., IEEE Trans. Electron Devices 52 (1), 6 (2005).Google Scholar
Yagi, S., Shimizu, M., Inada, M., Yamamoto, Y., Piao, G., Okumura, H., Yano, Y., Akutsu, N., Ohashi, H., Solid State Electron. 50, 1057 (2006).Google Scholar
Anand, M.J., Ng, G.I., Vicknesh, S., Arulkumaran, S., Ranjan, K., Phys. Status Solidi C 10 (11), 1421 (2013).Google Scholar
Zhou, X., Li, Q., Tang, C.W., Lau, K.M., IEEE Electron Device Lett. 33 (10), 1384 (2012).Google Scholar
Mo, J.J., Wichmann, N., Roelens, Y., Zaknoune, M., Desplanque, L., Wallart, X., Bollaert, S., “Lattice Matched and Pseudomorphic InGaAs MOSHEMT with f T of 200 GHz,” presented at the 24th International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, August 27–30, 2012.CrossRefGoogle Scholar
Radosavljevic, M., Chu-Kung, B., Corcoran, S., Dewey, G., Hudait, M.K., Fastenau, J.M., Kavalieros, J., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Rachmady, W., Shah, U., Chau, R., “Advanced High-K Gate Dielectric for High-Performance Short-Channel In0.7Ga0.3As Quantum Well Field Effect Transistors on Silicon Substrate for Low Power Logic Applications,” presented at the International Electron Devices Meeting, Baltimore, December 7–9, 2009.Google Scholar
Kim, K.W., Tian, H., Littlejohn, M.A., IEEE Trans. Electron Devices 38 (8), 1737 (1991).Google Scholar
Kim, D.H., Brar, B., del Alamo, J.A., “f T = 688 GHz and f max = 800 GHz in L g = 40 nm In0.7Ga0.3As MHEMTs with g m,max > 2.7 mS/µm,” presented at the International Electron Devices Meeting, Washington, DC, December 5–7, 2011.+2.7+mS/µm,”+presented+at+the+International+Electron+Devices+Meeting,+Washington,+DC,+December+5–7,+2011.>Google Scholar
Chang, E.Y., Kuo, C.I., Hsu, H.T., Chiang, C.Y., Miyamoto, Y., Appl. Phys. Express 6, 034001 (2013).Google Scholar
Komiak, J.J., Smith, P.M., Duh, K.H.G., Xu, D., Chao, P.C., “Metamorphic HEMT Technology for Microwave, Millimeter-Wave, and Submillimeter-Wave Applications,” presented at the IEEE Compound Semiconductor Integrated Circuit Symposium 2013, Monterey, CA, October 13–16, 2013.CrossRefGoogle Scholar
Schleeh, J., Rodilla, H., Wadefalk, N., Nilsson, P.A., Grahn, J., Solid State Electron. 91, 74 (2014).Google Scholar
Wu, X.F., Liu, H.X., Li, H.O., Li, Q., Hu, S.G., Xi, Z.F., Zhao, J., Sci. China Phys. Mech. Astron. 55 (12), 2389 (2012).Google Scholar
Leuther, A., Koch, S., Tessmann, A., Kallfass, I., Merkle, T., Massler, H., Loesch, R., Schlechtweg, M., Saito, S., Ambacher, O., “20 nm Metamorphic HEMT with 660 GHz f T,” presented at the 23rd International Conference on Indium Phosphide and Related Materials, Berlin, Germany, May 22–26, 2011.Google Scholar
Kim, D.H., del Alamo, J.A., IEEE Trans. Electron Devices 57 (7), 1504 (2010).Google Scholar
Kim, S.W., Koh, Y.M., Choi, W.Y., Kim, H.T., Kwon, Y.W., Seo, K.S., “W-band Low-Noise Amplifier with 50 nm In0.8GaP/In0.4AlAs/In0.35GaAs Metamorphic HEMT,” presented at the 20th International Conference on Indium Phosphide and Related Materials, Versailles, France, May 25–29, 2008.Google Scholar
Zhou, X., Tang, C.W., Li, H.O., Chen, P., Lau, K.M., “High-Performance Implant-Free InGaAs MOSFETs on GaAs Substrate Grown by MOCVD,” presented at the 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, November 1–4, 2010.Google Scholar
Li, Q., Zhou, X., Tang, C.W., Lau, K.M., IEEE Trans. Electron Devices 60 (12), 4112 (2013).Google Scholar
Lee, C.S., Yeh, J.C., Hsu, W.C., Liu, H.Y., Chou, B.Y., ECS J. Solid State Sci. Technol. 3 (12), Q227 (2014).Google Scholar
Huang, M.L., Chang, S.W., Chen, M.K., Fan, C.H., Lin, H.T., Lin, C.H., Chu, R.L., Lee, K.Y., Khaderbad, M.A., Chen, Z.C., Lin, C.H., Chen, C.H., Lin, L.T., Lin, H.J., Chang, H.C., Yang, C.L., Leung, Y.K., Yeo, Y.C., Jang, S.M., Hwang, H.Y., Diaz, C.H., “In0.53Ga0.47As MOSFETs with High Channel Mobility and Gate Stack Quality Fabricated on 300 mm Si Substrate,” presented at the 2015 Symposium on VLSI Technology, Kyoto, Japan, June 16–18, 2015.Google Scholar
Yadav, S., Saeid, A., Gong, X., Kohen, D.A., Nguyen, X.S., Lee, K.H., Lee, K.E., Yeo, Y.C., Antoniadis, D., Fitzgerald, E.A., “Integration of Si CMOS with InGaAs HEMTs on 200 mm Si Substrate,” presented at the 4th Annual SMART Low Energy Electronic Systems Workshop, Singapore, Singapore, January 21–22, 2016.Google Scholar
Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L., IEEE Trans. Microw. Theory Tech. 60 (6), 1764 (2012).Google Scholar
Chung, J.W., Hoke, W.E., Chumbes, E.M., Palacios, T., IEEE Electron Device Lett. 31 (3), 195 (2010).Google Scholar
Yue, Y., Hu, Z., Guo, J., Sensale-Rodriguez, B., Li, G., Wang, R., Faria, F., Fang, T., Song, B., Gao, X., Guo, S., Kosel, T., Snider, G., Fay, P., Jena, D., Xing, H., IEEE Electron Device Lett. 33 (7), 988 (2012).Google Scholar
Lee, H.B., Cho, H.I., An, H.S., Bae, Y.H., Lee, M.B., Lee, J.H., Hahm, S.H., IEEE Electron Device Lett. 27 (2), 81 (2006).Google Scholar
Im, K.S., Ha, J.B., Kim, K.W., Lee, J.S., Kim, D.S., Hahm, S.H., Lee, J.H., IEEE Electron Device Lett. 31 (3), 192 (2010).Google Scholar
Liu, W.K., Lubyshev, D., Fastenau, J.M., Wu, Y., Bulsara, M.T., Fitzgerald, E.A., Urteaga, M., Ha, W., Bergman, J., Brar, B., Hoke, W.E., LaRoche, J.R., Herrick, K.J., Kazior, T.E., Clark, D., Smith, D., Thompson, R.F., Drazek, C., Daval, N., J. Cryst. Growth 311, 1979 (2009).Google Scholar
Fitzgerald, E.A., Lee, K.E., Yoon, S.F., Chua, S.J., Tan, C.S., Palacios, T., Zhou, X., Chang, J.S., Kohen, D.A., Zhang, L., Lee, K.H., Liu, Z.H., Chiah, S.B., Ge, T., “Enabling the Integrated Circuits of the Future,” presented at the 2015 International Conference on Electron Devices and Solid-State Circuits, Singapore, Singapore, June 1–4, 2015.Google Scholar
Lee, K.H., Bao, S., Kohen, D.A., Huang, C.C., Lee, K.E., Fitzgerald, E.A., Tan, C.S., “Monolithic Integration of III–V HEMT and Si-CMOS through TSV-less 3D Wafer Stacking,” presented at the 2015 IEEE Electronic Components and Technology Conference, San Diego, May 26–29, 2015.Google Scholar