Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:56:46.789Z Has data issue: false hasContentIssue false

Metamorphic materials for quantum computing

Published online by Cambridge University Press:  14 March 2016

Peter W. Deelman
Affiliation:
HRL Laboratories, LLC, USA; pwdeelman@hrl.com
Lisa F. Edge
Affiliation:
HRL Laboratories, LLC, USA; lfedge@hrl.com
Clayton A. Jackson
Affiliation:
HRL Laboratories, LLC, USA; cajackson@hrl.com
Get access

Abstract

Quantum information and computing are at the forefront of computer science, but their implementation relies on significant developments in materials science. In particular, suitable, lattice-matched substrates for two promising approaches—electrostatically defined quantum dots in Si/SiGe heterostructures, and superconducting circuits containing Josephson junctions—do not exist. Instead, these approaches rely on metamorphic substrates. In this article, we focus on the general structure and requirements of SiGe quantum dot heterostructures, the demands they impose on the underlying substrate, and the impact that properties of the metamorphic substrate have on device performance. Superconductor Josephson junction materials are briefly discussed in a similar fashion, and opportunities for future developments in both systems are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nielsen, M.A., Chuang, I.L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).Google Scholar
Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L., Nature 464, 45 (2010).Google Scholar
Morello, A., Pla, J.J., Zwanenburg, F.A., Chan, K.W., Tan, K.Y., Huebl, H., Möttönen, M., Nugroho, C.D., Yang, C., van Donkelaar, J.A., Alves, A.D.C., Jamieson, D.N., Escott, C.C., Hollenberg, L.C.L., Clark, R.G., Dzurak, A.S., Nature 467, 687 (2010).Google Scholar
Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C., Science 309, 2180 (2005).Google Scholar
Croke, E.T., Borselli, M.G., Gyure, M.F., Bui, S.S., Milosavljevic, I.I., Ross, R.S., Schmitz, A.E., Hunter, A.T., Appl. Phys. Lett. 96, 042101 (2010).Google Scholar
Nordberg, E.P., Ten Eyck, G.A., Stalford, H.L., Muller, R.P., Young, R.W., Eng, K., Tracy, L.A., Childs, K.D., Wendt, J.R., Grubbs, R.K., Stevens, J., Lilly, M.P., Eriksson, M.A., Carroll, M.S., Phys. Rev. B Condens. Matter 80, 115331 (2009).Google Scholar
Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schmitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., Hunter, A.T., Nature 481, 344 (2012).Google Scholar
Zwanenburg, F.A., Dzurak, A.S., Morello, A., Simmons, M.Y., Hollenberg, L.C.L., Klimeck, G., Rogge, S., Coppersmith, S.N., Eriksson, M.A., Rev. Mod. Phys. 85, 961 (2013).Google Scholar
Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N., Appl. Phys. Lett. 100, 113510 (2012).Google Scholar
Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., Herzog, H.J., Phys. Rev. Lett. 54, 2441 (1985).Google Scholar
Schäffler, F., Semicond. Sci. Technol. 12, 1515 (1997).Google Scholar
Currie, M.T., Leitz, C.W., Langdo, T.A., Taraschi, G., Fitzgerald, E.A., Antoniadis, D.A., J. Vac. Sci. Technol. B 19, 2268 (2001).Google Scholar
Paul, D.J., Semicond. Sci. Technol. 19, R75 (2004).Google Scholar
Usami, N., “Types of Silicon–Germanium (SiGe) Bulk Crystal Growth Methods and Their Applications,” in Silicon-Germanium (SiGe) Nanostructures, 1st ed., Shiraki, Y., Usami, N., Eds. (Woodhead Publishing, Oxford, UK, 2011), pp. 7282.Google Scholar
Yildiz, M., Dost, S., Lent, B., J. Cryst. Growth 280, 151 (2005).Google Scholar
Wollweber, J., Schulz, D., Schröder, W., J. Cryst. Growth 158, 166 (1996).Google Scholar
Abrosimov, N.V., Rossolenko, S.N., Thieme, W., Gerhardt, A., Schröder, W., J. Cryst. Growth 174, 182 (1997).Google Scholar
Dold, P., Barz, A., Recha, S., Pressel, K., Franz, M., Benz, K.W., J. Cryst. Growth 192, 125 (1998).Google Scholar
Yonenaga, I., J. Cryst. Growth. 275, 91 (2005).Google Scholar
Yonenaga, I., Sakurai, M., Sluiter, M.H.F., Kawazoe, Y., Muto, S., J. Mater. Sci. Mater. Electron. 16, 429 (2005).CrossRefGoogle Scholar
Kinoshita, K., Arai, Y., Nakatsuka, O., Taguchi, K., Tomioka, H., Tanaka, R., Yoda, S., Jpn. J. Appl. Phys. 54, 04DH03 (2015).Google Scholar
Lee, M.L., Fitzgerald, E.A., Bulsara, M.T., Currie, M.T., Lochtefeld, A., J. Appl. Phys. 97, 011101 (2005).Google Scholar
Matthews, J.W., Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
Monroe, D., Xie, Y.H., Fitzgerald, E.A., Silverman, P.J., Watson, G.P., J. Vac. Sci. Technol. B 11, 1731 (1993).Google Scholar
Currie, M.T., Samavedam, S.B., Langdo, T.A., Leitz, C.W., Fitzgerald, E.A., Appl. Phys. Lett. 72, 1718 (1998).Google Scholar
Boykin, T.B., Klimeck, G., Eriksson, M.A., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafuso, F., Lee, S., Appl. Phys. Lett. 84, 115 (2004).Google Scholar
Friesen, M., Chutia, S., Tahan, C., Coppersmith, S.N., Phys. Rev. B Condens. Matter 75, 115318 (2007).Google Scholar
Ando, T., Fowler, A.B., Stern, F., Rev. Mod. Phys. 54, 437 (1982).Google Scholar
Leitz, C., Yang, V., Carroll, M., Langdo, T., Westhoff, R., Vineis, C., Bulsara, M., Mater. Sci. Semicond. Process. 8, 187 (2005).Google Scholar
Mooney, P.M., Jordan-Sweet, J.L., Noyan, I.C., Kaldor, S.K., Wang, P.C., Physica B Condens. Matter 273, 608 (1999).Google Scholar
Mooney, P.M., Legoues, F.K., Chu, J.O., Nelson, S.F., Appl. Phys. Lett. 62, 3464 (1993).Google Scholar
Wallis, D.J., Robbins, D.J., Pidduck, A.J., Williams, G.M., Churchill, A., Newey, J., “Mosaic Crystal Tilts and Their Relationship to Dislocation Structure, Surface Roughness and Growth Conditions in Relaxed SiGe Layers,”Mater. Res. Soc. Symp. Proc. 533, Fitzgerald, E.A., Mooney, P.M., Houghton, D.C., Eds. (Materials Research Society, Warrendale, PA, 1998), p. 77.Google Scholar
Mooney, P.M., J. Mater. Sci. Mater. Electron. 10, 209 (1999).Google Scholar
Evans, P.G., Savage, D.E., Prance, J.R., Simmons, C.B., Lagally, M.G., Coppersmith, S.N., Eriksson, M.A., Schülli, T.U., Adv. Mater. 24, 5217 (2012).Google Scholar
Friesen, M., Coppersmith, S.N., Phys. Rev. B Condens. Matter 81, 115324 (2010).Google Scholar
Boykin, T.B., Klimeck, G., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafiuso, F., Lee, S., Phys. Rev. B Condens. Matter 70, 1 (2004).Google Scholar
Ismail, K., LeGoues, F.K., Saenger, K.L., Arafa, M., Chu, J.O., Mooney, P.M., Meyerson, B.S., Phys. Rev. Lett. 73, 3447 (1994).Google Scholar
Goswami, S., Slinker, K.A., Friesen, M., McGuire, L.M., Truitt, J.L., Tahan, C., Klein, L.J., Chu, J.O., Mooney, P.M., van der Weide, D.W., Joynt, R., Coppersmith, S.N., Eriksson, M.A., Nat. Phys. 3, 41 (2007).Google Scholar
Borselli, M.G., Ross, R.S., Kiselev, A.A., Croke, E.T., Holabird, K.S., Deelman, P.W., Warren, L.D., Alvarado-Rodriguez, I., Milosavljevic, I., Ku, F.C., Wong, W.S., Schmitz, A.E., Sokolich, M., Gyure, M.F., Hunter, A.T., Appl. Phys. Lett. 98, 123118 (2011).Google Scholar
You, J.Q., Nori, F., Nature 474, 589 (2011).Google Scholar
Creedon, D.L., Reshitkyk, Y., Farr, W., Martinis, J.M., Duty, T.L., Tobar, M.E., Appl. Phys. Lett. 98, 222903 (2011).Google Scholar
Oh, S., Cicak, K., Kline, J.S., Sillanpää, M.A., Osborn, K.D., Whittaker, J.D., Simmonds, R.W., Pappas, D.P., Phys. Rev. B Condens. Matter 74, 100502 (2006).Google Scholar
Krogstrup, P., Ziino, N.L.B., Chang, W., Albrecht, S.M., Madsen, M.H., Johnson, E., Nygård, J., Marcus, C.M., Jespersen, T.S., Nat. Mater. 14, 400 (2015).Google Scholar
Pilania, G., Thijsse, B.J., Hoagland, R.G., Lazić, I., Valone, S.M., Liu, X.Y., Sci. Rep. 4, 4485 (2014).Google Scholar