Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T00:00:18.074Z Has data issue: false hasContentIssue false

Materials Issues in Blue Recording

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In the development of materials for blue recording, the issues for rewritable discs relate to speed and lifetime stability. Both aspects are connected with the properties of the phase-change recording layer. Higher data rates require faster erasure (i.e., recrystallization) of previously written marks. Increasing the Sb concentration or adding specific dopants to the phase-change material appears to accelerate the crystallization rate. Faster erasure rates should, however, not promote spontaneous recrystallization at room temperature, as this would adversely affect the lifetime stability. This roomtemperature stability can be estimated from an activation energy analysis. Excellent lifetime stability proves attainable by a judicious selection of the composition of the phase-change material.

For write-once discs, the choice of the recording material is between a spin-coated dye, a phase-change layer, and an inorganic alloy. While suitable dye materials for blue wavelengths are now being developed, research into the alternative of inorganic bilayers has yielded encouraging results. Thus far, good write-once recording performance has been demonstrated with Cu/Si as the recording medium.The mechanism of mark formation in such a bilayer will be addressed. Promising results obtained with optimized Cu/Si stacks illustrate the attractiveness of this type of write-once material for blue recording.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Houten, H. van and Leibbrandt, W.Commun. ACM 43 (2000) p.65.Google Scholar
2Hellmig, J.Physics World 17 (7) (2004) p.21.CrossRefGoogle Scholar
3Marchant, A.B.Optical Recording—ATechnical Overview, Ch. 12.4 (Addison-Wesley Publishing, Reading, Mass., 1990).Google Scholar
4Kasono, O.Sato, M.Sugimoto, T.Kojima, Y. and Katsumura, M.Jpn. J. Appl. Phys. 43 (2004) p.5078.CrossRefGoogle Scholar
5Neijzen, J.H.M.Meinders, E.R. and Santen, H. van, Jpn. J.Appl. Phys. 43 (2004) p.5047.CrossRefGoogle Scholar
6Ito, E.Kawaguchi, Y.Tomiyama, M.Abe, S. and Ohno, E.Jpn. J.Appl. Phys. 44 (2005) p.3574.CrossRefGoogle Scholar
7Osato, K.Kai, S.Takemoto, Y.Nakao, T.Nakagawa, K.Kouchiyama, A. and Aratani, K. in OSA Trends in Optics and Photonics (TOPS), Vol. 88, Optical Data Storage, OSA Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2003) p.52.Google Scholar
8Miyamoto, M.Ushiyama, J., K, Umezawa, Kashiwakura, A. and Tamura, R. ISOM/ODS 2002 Tech. Dig. (2002) p.416.Google Scholar
9Kageyama, Y.Iwasaki, H.Hariagaya, M. and Ide, Y.Jpn. J.Appl. Phys. 35 (1996) p.500.CrossRefGoogle Scholar
10Pieterson, L. van, Rijpers, J.C.N. and Hellmig, J.Jpn. J. Appl. Phys. 43 (2004) p. 4974.CrossRefGoogle Scholar
11Zhou, G.F.Borg, H.J.Rijpers, J.C.N.Lankhorst, M.H.R. and Horikx, J.J.L.Proc. SPIE 4090 (2000) p.108.CrossRefGoogle Scholar
12Borg, H.J.Schijndel, M. van, Rijpers, J.C.N.Lankhorst, M.Zhou, G.Dekker, M.J.Ubbens, I.P.D. and Kuijper, M.Jpn. J. Appl.Phys. 40 (2001) p.1592.CrossRefGoogle Scholar
13Matsunaga, T. and Yamada, N.presented at EPCOS 2004 (Balzers, Liechtenstein, 2004), available at http://www.epcos.org/pdf_2004/07paper_matsunaga.pdf (accessed February 2006).Google Scholar
14Nishihara, T.Kojima, R.Miyagawa, N. and Yamada, N.Jpn. J. Appl. Phys. 44 (2005) p. 3037.CrossRefGoogle Scholar
15Yusu, K.Ashida, S.Nakamura, N.Ohmachi, N.Morishita, N.Ogawa, A. and Ichihara, K.Jpn. J.Appl. Phys. 42 (2003) p.858.CrossRefGoogle Scholar
16Ohmachi, N.Ashida, S.Yusu, K.Nakai, T.Ichihara, K. and Nakamura, N.Jpn. J. Appl. Phys. 43 (2004) p.4978.CrossRefGoogle Scholar
17Ohmachi, N.Morishita, N.Yusu, K.Nakamura, N.Nakai, T. and Ashida, S.Jpn. J. Appl. Phys. 45 (2006) p. 1210.CrossRefGoogle Scholar
18Shinotsuka, M.Onagi, N. and Harigaya, M.Jpn. J.Appl. Phys. 39 (2000) p.976.CrossRefGoogle Scholar
19Shinotsuka, M.Iwasa, H.Furukawa, R.Murata, S.Abe, M. and Kageyama, Y.Jpn. J. Appl. Phys. 41 (2002) p.1693.CrossRefGoogle Scholar
20Hellmig, J.Mijiritskii, A.V.Borg, H.J.Musialková, K., and Vromans, P.Jpn. J. Appl. Phys. 42 (2003) p.848.CrossRefGoogle Scholar
21Borg, H.Schijndel, M. van, Rijpers, J.C.N.Lankhorst, M.H.R.Zhou, G.Dekker, M.J.Ubbens, I.P.D. and Kuijper, M.Jpn. J. Appl. Phys. 40 (2001) p.1592.CrossRefGoogle Scholar
22Mijiritskii, A.Hellmig, J.Borg, H. and Meinders, E.Jpn. J. Appl. Phys. 41 (2002) p.1688.CrossRefGoogle Scholar
23Pieterson, L. van, Lankhorst, M.H.R.Schijndel, M. van, Kuiper, A.E.T. and Roosen, J.H.J.J. Appl. Phys. 97 083520 (2005).CrossRefGoogle Scholar
24Lankhorst, M.H.R.J. Non-Cryst. Solids 297 (2002) p.210.CrossRefGoogle Scholar
25Takazawa, K.Morishita, N.Ootera, Y.Umezawa, K.Nakamura, N. and Morita, S. presented at ISOM/ODS'05, ThB3 (2005).Google Scholar
26Nishiwaki, H.Kitano, K.Nakajima, H.Muramatsu, E.Taniguchi, S.Inoue, A.Yokogawa, F.Horie, M.Kiyono, K.Miyazawa, T. and Kurose, Y.Jpn. J. Appl. Phys. 45 (2006) p.1452.CrossRefGoogle Scholar
27Kubo, H.Kurose, Y.Miyazawa, T.Kawano, T.Takeshima, H.Nagataki, Y.Ota, H. and Tamura, R. presented at ISOM/ODS'05, PD-3 (2005).Google Scholar
28Saito, T.Jpn. J. Appl. Phys. 43 (2004) p. 8085.CrossRefGoogle Scholar
29Chen, B.M.Chen, H.F.Yeh, R.L. and Chung, J.M.Jpn. J.Appl. Phys. 43 (2004) p.5018; R.L. Yeh H.H. Chang and B.M. Chen Proc. ODS 2004 (2004) p.55 and p.58.CrossRefGoogle Scholar
30Her, Y.C. and Chen, C.W. presented at ISOM/ODS'05, WP18 (2005).Google Scholar
31Yen, P.F.Chen, J.P.Wu, C.Y.Lee, A.T.Hsieh, C.Y. and Jeng, T.R. presented at ISOM/ODS'05, TuP20 (2005).Google Scholar
32Kuiper, A.E.T.Vullers, R.J.M. and Pasquariello, D. presented at ISOM/ODS'05, ThB2 (2005).Google Scholar
33Kato, N.Yamaguchi, M. and Takishita, T.Jpn. J. Appl. Phys. 45 (2006) p. 1426.CrossRefGoogle Scholar
34Hosoda, Y.Mitsumori, A.Sato, M. and Yamaguchi, M.Jpn. J. Appl. Phys. 43 (2004) p. 4997.CrossRefGoogle Scholar
35Aoshima, M.Inoue, H.Mishima, K.Hirata, H. and Utsunomiya, H. U.S. Patent Application No. 2003/0190551 A1 (October 9, 2003).Google Scholar
36Inoue, H.Mishima, K.Aoshima, M.Hirata, H.Kato, T. and Utsunomiya, H.Jpn. J.Appl. Phys. 42 (2003) p.1059.CrossRefGoogle Scholar
37Kuiper, A.E.T.Vullers, R.J.M.Pasquariello, D. and Naburgh, E.Appl. Phys. Lett. 86 221921 (2005).CrossRefGoogle Scholar
38Vullers, R.J.M.Kuiper, A.E.T. and Pasquariello, D.Jpn. J.Appl. Phys. 45 (2006) p.1219.CrossRefGoogle Scholar
39Massalski, T.B.Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990) p.1447.Google Scholar