Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T01:02:23.600Z Has data issue: false hasContentIssue false

Material considerations for in vitro neural interface technology

Published online by Cambridge University Press:  08 June 2012

Yoonkey Nam*
Affiliation:
Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; ynam@kaist.ac.kr
Get access

Abstract

As biological science advances, there is a need for new technical tools to study biological matters. In neuroscience, new knowledge on the nervous system is discovered through biological experiments carried out under in vitro conditions. As experiments become more delicate, the technical requirements also increase. Recent advances in nano- and microscale technologies have increased the applicability of new emerging technology to neurobiology and neural engineering. As a result, many materials that were not originally developed for neural interfaces have become attractive candidates to sense neural signals, stimulate neurons, and grow nerve cells for tissue engineering. This article focuses on the material requirements for in vitro neural interfaces and introduces materials that are used to design various neural interface platforms in vitro.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Banker, G., Goslin, K., Culturing Nerve Cells, 2nd ed. (MIT Press, Cambridge, MA, 1998).CrossRefGoogle Scholar
2.Bliss, T.V., Collingridge, G.L., Nature 361, 31 (1993).CrossRefGoogle Scholar
3.Welsh, D.K., Logothetis, D.E., Meister, M., Reppert, S.M., Neuron 14, 697 (1995).CrossRefGoogle Scholar
4.Sekirnjak, C., Hottowy, P., Sher, A., Dabrowski, W., Litke, A.M., Chichilnisky, E.J., J. Neurosci. 28, 4446 (2008).CrossRefGoogle Scholar
5.Taketani, M., Baudry, M., Advances in Network Electrophysiology Using Multi-Electrode Arrays (Springer, NY, 2006).CrossRefGoogle Scholar
6.Jones, I.L., Livi, P., Lewandowska, M.K., Fiscella, M., Roscic, B., Hierlemann, A., Anal. Bioanal. Chem. 399, 2313 (2011).CrossRefGoogle Scholar
7.Taylor, A.M., Jeon, N.L., Curr. Opin. Neurobiol. 20, 640 (2010).CrossRefGoogle Scholar
8.Wheeler, B.C., Brewer, G.J., Proc. IEEE Inst. Electr. Electron. Eng. 98, 398 (2010).CrossRefGoogle Scholar
9.Nam, Y., Wheeler, B.C., Crit. Rev. Biomed. Eng. 39, 45 (2011).Google Scholar
10.Millet, L.J., Stewart, M.E., Sweedler, J.V., Nuzzo, R.G., Gillette, M.U., Lab on a Chip 7, 987 (2007).CrossRefGoogle Scholar
11.Kotov, N.A., Winter, J.O., Clements, I.P., Jan, E., Timko, B.P., Campidelli, S., Pathak, S., Mazzatenta, A., Lieber, C.M., Prato, M., Bellamkonda, R.V., Silva, G.A., Kam, N.W.S., Patolsky, F., Ballerini, L., Adv. Mater. 21, 3970 (2009).CrossRefGoogle Scholar
12.Merrill, D.R., Bikson, M., Jefferys, J.G., J. Neurosci. Methods 141, 171 (2005).CrossRefGoogle Scholar
13.Novak, J.L., Wheeler, B.C., J. Neurosci. Methods 23, 149 (1988).CrossRefGoogle Scholar
14.Park, S., Song, Y.J., Boo, H., Chung, T.D., J. Phys. Chem. C 114, 8721 (2010).CrossRefGoogle Scholar
15.Kim, J.H., Kang, G., Nam, Y., Choi, Y.K., Nanotechnology 21, 85303 (2010).CrossRefGoogle Scholar
16.Bruggemann, D., Wolfrum, B., Maybeck, V., Mourzina, Y., Jansen, M., Offenhausser, A., Nanotechnology 22, 265104 (2011).CrossRefGoogle Scholar
17.Hai, A., Shappir, J., Spira, M.E., Nat. Methods 7, 200 (2010).Google Scholar
18.Gabay, T., Ben-David, M., Kalifa, I., Sorkin, R., Abrams, Z.R., Ben-Jacob, E., Hanein, Y., Nanotechnology 18, 035201 (2007).Google Scholar
19.Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., Gross, G.W., Nat. Nanotechnol. 3, 434 (2008).CrossRefGoogle Scholar
20.Wang, K., Fishman, H.A., Dai, H., Harris, J.S., Nano. Lett. 6, 2043 (2006).CrossRefGoogle Scholar
21.Shoval, A., Adams, C., David-Pur, M., Shein, M., Hanein, Y., Sernagor, E., Front. Neuroeng. 2, 4 (2009).Google Scholar
22.Cellot, G., Cilia, E., Cipollone, S., Rancic, V., Sucapane, A., Giordani, S., Gambazzi, L., Markram, H., Grandolfo, M., Scaini, D., Gelain, F., Casalis, L., Prato, M., Giugliano, M., Ballerini, L., Nat. Nanotechnol. 4, 126 (2009).CrossRefGoogle Scholar
23.Cellot, G., Toma, F.M., Varley, Z.K., Laishram, J., Villari, A., Quintana, M., Cipollone, S., Prato, M., Ballerini, L., J. Neurosci. 31, 12945 (2011).CrossRefGoogle Scholar
24.Patolsky, F., Timko, B.P., Yu, G., Fang, Y., Greytak, A.B., Zheng, G., Lieber, C.M., Science 313, 1100 (2006).Google Scholar
25.Qing, Q., Pal, S.K., Tian, B., Duan, X., Timko, B.P., Cohen-Karni, T., Murthy, V.N., Lieber, C.M., Proc. Natl. Acad. Sci. U.S.A. 107, 1882 (2010).CrossRefGoogle Scholar
26.Robinson, J.T., Jorgolli, M., Shalek, A.K., Yoon, M.H., Gertner, R.S., Park, H., Nat. Nanotechnol. 7, 180 (2012).CrossRefGoogle Scholar
27.Green, R.A., Lovell, N.H., Wallace, G.G., Poole-Warren, L.A., Biomaterials 29, 3393 (2008).Google Scholar
28.Cui, X., Martin, D.C., Sensors Actuators B: Chem. 89, 92 (2003).CrossRefGoogle Scholar
29.Kim, D.-H., Richardson-Burns, S.M., Hendricks, J.L., Sequera, C., Martin, D.C., Adv. Funct. Mater. 17, 79 (2007).Google Scholar
30.Abidian, M.R., Corey, J.M., Kipke, D.R., Martin, D.C., Small 6, 421 (2010).CrossRefGoogle Scholar
31.Borkholder, D.A., Bao, J., Maluf, N.I., Perl, E.R., Kovacs, G.T., J. Neurosci. Methods 77, 61 (1997).CrossRefGoogle Scholar
32.Ecken, H., Ingebrandt, S., Krause, M., Richter, D., Hara, M., Offenhäusser, A., Electrochim. Acta 48, 3355 (2003).CrossRefGoogle Scholar
33.Gross, G.W., Wen, W.Y., Lin, J.W., J. Neurosci. Methods 15, 243 (1985).CrossRefGoogle Scholar
34.Heuschkel, M.O., Fejtl, M., Raggenbass, M., Bertrand, D., Renaud, P., J. Neurosci. Methods 114, 135 (2002).CrossRefGoogle Scholar
35.Erickson, J., Tooker, A., Tai, Y.C., Pine, J., J. Neurosci. Methods 175, 1 (2008).CrossRefGoogle Scholar
36.Zhang, J., Atay, T., Nurmikko, A.V., Nano Lett. 9, 519 (2009).CrossRefGoogle Scholar
37.Starovoytov, A., Choi, J., Seung, H.S., J. Neurophysiol. 93, 1090 (2005).CrossRefGoogle Scholar
38.Fenno, L., Yizhar, O., Deisseroth, K., Annu. Rev. Neurosci. 34, 389 (2011).CrossRefGoogle Scholar
39.Bucher, V., Brunner, B., Leibrock, C., Schubert, M., Nisch, W., Biosensors Bioelectron. 16, 205 (2001).CrossRefGoogle Scholar
40.Branch, D.W., Wheeler, B.C., Brewer, G.J., Leckband, D.E., IEEE Trans. Biomed. Eng. 47, 290 (2000).CrossRefGoogle Scholar
41.Kang, K., Kang, G., Lee, B.S., Choi, I.S., Nam, Y., Chem. Asian J. 5, 1804 (2010).CrossRefGoogle Scholar
42.Kang, G., Lee, J.H., Lee, C.S., Nam, Y., Lab on a Chip 9, 3236 (2009).CrossRefGoogle Scholar
43.Wyart, C., Ybert, C., Bourdieu, L., Herr, C., Prinz, C., Chatenay, D., J. Neurosci. Methods 117, 123 (2002).CrossRefGoogle Scholar
44.Kang, K., Choi, I.S., Nam, Y., Biomaterials 32, 6374 (2011).CrossRefGoogle Scholar
45.Wang, N., Tytell, J.D., Ingber, D.E., Nat. Rev. Mol. Cell Biol. 10, 75 (2009).CrossRefGoogle Scholar
46.Hoffman-Kim, D., Mitchel, J.A., Bellamkonda, R.V., Annu. Rev. Biomed. Eng. 12, 203 (2010).CrossRefGoogle Scholar
47.Shalek, A.K., Robinson, J.T., Karp, E.S., Lee, J.S., Ahn, D.R., Yoon, M.H., Sutton, A., Jorgolli, M., Gertner, R.S., Gujral, T.S., MacBeath, G., Yang, E.G., Park, H., Proc. Natl. Acad. Sci. U.S.A. 107, 1870 (2010).CrossRefGoogle Scholar
48.Hallstrom, W., Martensson, T., Prinz, C., Gustavsson, P., Montelius, L., Samuelson, L., Kanje, M., Nano Lett. 7, 2960 (2007).Google Scholar
49.Sorkin, R., Greenbaum, A., David-Pur, M., Anava, S., Ayali, A., Ben-Jacob, E., Hanein, Y., Nanotechnology 20, 015101 (2009).CrossRefGoogle Scholar
50.Jang, M.J., Namgung, S., Hong, S., Nam, Y., Nanotechnology 21, 235102 (2010).Google Scholar
51.Gertz, C.C., Leach, M.K., Birrell, L.K., Martin, D.C., Feldman, E.L., Corey, J.M., Dev. Neurobiol. 70, 589 (2010).CrossRefGoogle Scholar
52.Jang, K.J., Kim, M.S., Feltrin, D., Jeon, N.L., Suh, K.Y., Pertz, O., PLoS One 5, e15966 (2010).CrossRefGoogle Scholar
53.Cho, W.K., Kang, K., Kang, G., Jang, M.J., Nam, Y., Choi, I.S., Angew. Chem. Int. Ed. Engl. 49, 10114 (2010).CrossRefGoogle Scholar
54.Rowe, L., Almasri, M., Lee, K., Fogleman, N., Brewer, G.J., Nam, Y., Wheeler, B.C., Vukasinovic, J., Glezer, A., Frazier, A.B., Lab on a Chip 7, 475 (2007).CrossRefGoogle Scholar
55.Musick, K., Khatami, D., Wheeler, B.C., Lab on a Chip 9, 2036 (2009).Google Scholar
56.Hanson Shepherd, J.N., Parker, S.T., Shepherd, R.F., Gillette, M.U., Lewis, J.A., Nuzzo, R.G., Adv. Funct. Mater. 21, 47 (2011).CrossRefGoogle Scholar
57.Pautot, S., Wyart, C., Isacoff, E.Y., Nat. Methods 5, 735 (2008).Google Scholar
58.Boland, T., Xu, T., Damon, B., Cui, X., Biotechnol. J. 1, 910 (2006).CrossRefGoogle Scholar