Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:41:30.416Z Has data issue: false hasContentIssue false

In Situ X-Ray Tomography Measurements of Deformation in Cellular Solids

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The use of microtomography to study the structure and especially the deformation modes of cellular solids is reviewed in this article. First, the technique is described in detail. Examples illustrating the power of the coupling of in situ deformation with three-dimensional (3D) imaging, drawn from the recent literature and the authors' own work, are then given. The most detailed example is the study of the deformation modes of several samples made of different aluminum foams. Four kinds of closed-cell foams were investigated, corresponding to different routes available today for their manufacture. The initial macrostructure was quantified using the 3D images combined with 3D granulometry, allowing retrieval of pertinent information about the cell size and the wall and strut thicknesses. The global behavior exhibited by the foams during the in situ compression experiments was shown to vary from one brand of material to another. Some of these variations can be explained by differences in the known microstructure and the measured macrostructure of the samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Benouali, A.H. and Froyen, L., in Cellular Metals and Metal Foaming Technology, edited by Banhart, J., Ashby, M., and Fleck, N. (MIT-Verlag, Bremen, 2001) p. 269.Google Scholar
2.Olurin, O.B., Arnold, M., Körner, C., and Singer, R.F., Mater. Sci. Eng., A 328 (2002) p. 334.CrossRefGoogle Scholar
3.Elmoutaouakkil, A., Salvo, L., Maire, E., and Peix, G., Adv. Eng. Mater. 4 (2002) p. 803.3.0.CO;2-D>CrossRefGoogle Scholar
4.Degisher, H.P., Kottar, A., and Foroughi, F., in X-Ray Tomography in Material Science, edited by Baruchel, J., Buffière, J.-Y., Maire, E., Merle, P., and Peix, G. (Hermes Science Publications, Paris, 2000) p. 165.Google Scholar
5.Helfen, L., Baumbach, T., Stanzick, H., Banhart, J., Elmoutaouakkil, A., Cloetens, P., and Schladitz, K., Adv. Eng. Mater. 4 (2002) p. 808.3.0.CO;2-U>CrossRefGoogle Scholar
6.Babout, L., Maire, E., Buffière, J.-Y., and Fougères, R., Acta Mater. 49 (2001) p. 2055.CrossRefGoogle Scholar
7.Bart-Smith, H., Bastawros, A.F., Mumm, D.R., Evans, A.G., Sypeck, D.J., and Wadley, H.N.G., Acta Mater. 46 (10) (1998) p. 3582.CrossRefGoogle Scholar
8.Elliott, J.A., Windle, A.H., Hobdel, J.R., Eeckhaut, G., Oldman, R.J., Ludwig, W., Boller, E., Cloetens, P., and Baruchel, J., J. Mater. Sci. 37 (2002) p. 1547.CrossRefGoogle Scholar
9.Müller, R., Bösch, T., Jarak, D., Stauber, M., Nazarian, A., Tantillo, M., and Boyd, S., in Proc. SPIE Developments in X-Ray Tomography III, Vol. 4503, edited by Bonse, U. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2001) p. 189.Google Scholar
10.Müller, R., Gerber, S.C., and Hayes, W.C., Technol. Health Care 6 (1998) p. 433.CrossRefGoogle Scholar
11.Mummery, P.M., Anderson, P., Davis, G.R., Derby, B., and Elliott, J.C., Scripta Metall. Mater. 29 (1993) p. 1457.CrossRefGoogle Scholar
12.Buffière, J.-Y., Maire, E., Cloetens, P., Lormand, G., and Fougères, R., Acta Mater. 47 (5) (1999) p. 1613.CrossRefGoogle Scholar
13.Maire, E., Wattebled, F., Buffière, J.-Y., and Peix, G., in Proc. Euromat 9 Conf., Vol. 5, edited by Clyne, T. W. and Simancik, F. (WILEY-VCH, München, 2000) p. 68.Google Scholar
14.Maire, E., Buffière, J.-Y., Salvo, L., Blandin, J.J., Ludwig, W., and Létang, J.M., Adv. Eng. Mater. 3 (8) (2001) p. 539.3.0.CO;2-6>CrossRefGoogle Scholar
15.Feldkamp, L.A., Davis, L.C., and Kress, J.W.. J. Opt. Soc. Am. 1 (6) (1984) p. 612.Google Scholar
16.Cendre, E., Duvauchelle, P., Peix, G., Buffière, J.Y., and Babot, D., in Proc. First World Congress on Industrial Process Tomography (Umist University, U.K., 1999) p. 362.Google Scholar
17.Pistoia, W., Van Rietbergen, B., Lochmüller, E.M., Lill, C.A., Eckstein, F., and Rüegsegger, P., Bone 30 (6) (2002) p. 842.CrossRefGoogle Scholar
18.Jasiuniene, E., Goebbels, J., Illerhaus, B., Lowe, P., and Kottar, A., in Cellular Metals and Metal Foaming Technology, edited by Banhart, J., Ashby, M., and Fleck, N. (MIT-Verlag, Bremen, 2001) p. 251.Google Scholar
19.Gioux, G., McCormack, T.M., and Gibson, L.J.Int. J. Mech. Sci. 42 (2000) p. 1097.Google Scholar
20.Bay, B.K., Smith, T.S., Fyhrie, D.P., and Saad, M., Exp. Mech. 39 (1999) p. 218.Google Scholar
21.Maire, E., in Handbook of Cellular Metals, Production, Processing, Applications, Part 4.2, edited by Degischer, H.P. and Kriszt, B. (WILEY-VCH, Einheim, 2002) p. 145.Google Scholar
22.Baumeister, J., Banhart, J., and Weber, M., Powder Met. Int. 25 (1993) p. 182.Google Scholar
23.Asholt, P., in Metal Foams and Porous Metal Structures, edited by Banhart, J., Ashby, M.F., and Fleck, N.A. (MIT-Verlag, Bremen, 1999) p. 133.Google Scholar
24.Miyoshi, T., Itoh, M., Akiyama, S., and Kitahara, A., in Metal Foams and Porous Metal Structures, edited by Banhart, J., Ashby, M.F., and Fleck, N.A. (MIT-Verlag, Bremen, 1999) p. 125.Google Scholar
25.Gergely, V. and Clyne, B.Adv. Eng. Mater. 2 (2000) p. 175.3.0.CO;2-W>CrossRefGoogle Scholar
26.Chermant, J.L. and Coster, M., Précis d'analyse d'image, Edition du CNRS, Paris (1985).Google Scholar