Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T19:00:15.880Z Has data issue: false hasContentIssue false

Imprint Materials for Nanoscale Devices

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanoimprint lithography is a potentially low-cost, high-resolution patterning technique, but most of the surrounding development work has been directed toward tool designs and processing techniques. There remains a tremendous opportunity and need to develop new materials for specific nanoimprint applications. This article provides an overview of relevant materials-related development work for nanoimprint lithographic applications. Material requirements for nanoimprint patterning for the sub-45-nm integrated-circuit regime are discussed, along with proposed nanoimprint applications such as imprintable dielectrics, conducting polymers, biocompatible materials, and materials for microfluidic devices. Polymers available for thermal nanoimprint processing and photocurable precursors for ultraviolet-assisted nanoimprint lithography are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L., and Zhuang, L., J. Vac. Sci. Technol. B 15 (1997) p. 2897.CrossRefGoogle Scholar
2.Chou, S.Y., Keimel, C., and Gu, J., Nature 417 (2002) p. 835.CrossRefGoogle Scholar
3.Zhang, W. and Chou, S. Y., Appl. Phys. Lett. 83 (2003) p. 1632.CrossRefGoogle Scholar
4.Smith, B.J., Stacey, N.A., Donnelly, J.P., Onsongo, D.M., Bailey, T.C., Mackay, C.J., Resnick, D.J., Dauksher, W.J., Mancini, D.P., Nordquist, K.J., Sreenivasan, S.V., Banerjee, S.K., Ekerdt, J.G., and Willson, C.G., Proc. SPIE–Int. Soc. Opt. Eng. 5037 (2003) p. 1029.Google Scholar
5.Mills, C.A., Martinez, E., Bessueille, F., Villanueva, G., Bausells, J., Samitier, J., and Errachid, A., Microelectron. Eng. 78–79 (2005) p. 695.CrossRefGoogle Scholar
6.Cao, H., Yu, Z., Wang, J., Tegenfeldt, J.O., Austin, R.H., Chen, E., Wu, W., and Chou, S.Y., Appl. Phys. Lett. 81 (2002) p. 174.CrossRefGoogle Scholar
7.Seekamp, J., Zankovych, S., Helfer, A.H., Maury, P., Sotomayor-Torres, C.M., Bottger, G., Liguda, C., Eich, M., Heidari, B., Montelius, L., and Ahopelto, J., Nanotechnology 13 (2002) p. 581.CrossRefGoogle Scholar
8.Huang, Y., Paloczi, G.T., Yariv, A., Zeng, C., and Dalton, L.R., J. Phys. Chem. B. 108 (2004) p. 8606.CrossRefGoogle Scholar
9.Kee, C.-S., Han, S.-P., Yoon, K.B., Choi, C.-G., Sung, H.K., Oh, S.S., Park, H.Y., Park, S., and Schift, H., Appl. Phys. Lett. 86 051101/1 (2005).Google Scholar
10.Mills, C.A., Escarre, J., Engel, E., Martinez, E., Errachid, A., Bertomeu, J., Andreu, J., Planell, J.A., and Samitier, J., Nanotechnology 16 (2005) p. 369375.CrossRefGoogle Scholar
11.Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., and Whitesides, G.M., Chem. Rev. 105 (2005) p. 1171.CrossRefGoogle Scholar
12.Guo, L.J., J. Phys. D: Appl. Phys. 37 (2004) p. R123.CrossRefGoogle Scholar
13.Hua, F., Sun, Y., Gaur, A., Meitl, M.A., Bilhaut, L., Rotkina, L., Wang, J., Geil, P., Shim, M., Rogers, J.A., and Shim, A., Nano Lett. 4 (2004) p. 2467.CrossRefGoogle Scholar
14.Scheer, H.-C. and Schulz, H., Microelectron. Eng. 56 (2001) p. 311.CrossRefGoogle Scholar
15.Lazzarino, F., Gourgon, C., Schiavone, P., and Perret, C., J. Vac. Sci. Technol. B 22 (2004) p. 3318.CrossRefGoogle Scholar
16.Xia, Y. and Whitesides, G.M., Annu. Rev. Mater. Sci. 28 (1998) p. 153.CrossRefGoogle Scholar
17.Rogers, J.A. and Nuzzo, R.G., Mater. Today 8 (2005) p. 50.CrossRefGoogle Scholar
18.Colburn, M., Johnson, S., Stewart, M., Damle, S., Bailey, T.C., Choi, B., Wedlake, M., Michaelson, T., Sreenivasan, S.V., Ekerdt, J., and Willson, C.G., Proc. SPIE–Int. Soc. Opt. Eng. 3676 (1999) p. 379.Google Scholar
19.Stewart, M.D., Johnson, S.C., Sreenivasan, S.V., Resnick, D.J., and Willson, C.G., J. Microlith., Microfab., Microsyst. 4 (2005) p. 011002.Google Scholar
20.Chou, S.Y., Krauss, P.R., and Renstrom, P.J., Appl. Phys. Lett. 67 (1995) p. 3114.CrossRefGoogle Scholar
21.Chao, C. and Guo, L.J., J. Vac. Sci. Technol. B 20 (2002) p. 2086.Google Scholar
22.Ohtake, T., Nakamatsu, H.-I., Matsui, S., Tabata, H., and Kawai, T., J. Vac. Sci. Technol. B 22 (2004) p. 3275.CrossRefGoogle Scholar
23.Gourgon, C., Perret, C., and Micouin, G., Microelectron. Eng. 61–62 (2002) p. 385.CrossRefGoogle Scholar
24.Pfeiffer, K., Fink, M., Gruetzner, G., Bleidiessel, G., Schulz, H., and Scheer, H., Microelectron. Eng. 57–58 (2001) p. 381.CrossRefGoogle Scholar
25.Cheng, X. and Guo, L.J., Microelectron. Eng. 71 (2004) p. 288.CrossRefGoogle Scholar
26.Makela, T., Haatainen, T., Ahopelto, J., and Isotalo, H., J. Vac. Sci. Technol. B 19 (2001) p. 487.CrossRefGoogle Scholar
27.Behl, M., Seekamp, J., Zankovych, S., Torres, C.M.S., Zentel, R., and Ahopelto, J., Adv. Mater. 14 (2002) p. 588.3.0.CO;2-K>CrossRefGoogle Scholar
28.Wang, J., Sun, X., Chen, L., and Chou, S.Y., Appl. Phys. Lett. 75 (1999) p. 2767.CrossRefGoogle Scholar
29.Finder, Ch., Beck, M., Seekamp, J., Pfeiffer, K., Carlberg, P., Maximov, I., Reuther, F., Sarwe, E.L., Zankovych, S., Ahopelto, J., Montelius, L., Mayer, C., and Sotomayor Torres, C. M., Microelectron. Eng. 67–68 (2003) p. 623.CrossRefGoogle Scholar
30.Li, H.-W. and Huck, W.T.S., Nano Lett. 4 (2004) p. 1633.CrossRefGoogle Scholar
31.Cheng, J.Y., Ross, C.A., Thomas, E.L., Smith, H.I., and Vancso, G.J., Adv. Mater. 15 (2003) p. 1599.CrossRefGoogle Scholar
32.Schulz, H., Scheer, H.-C., Hoffman, T., Sotomayor Torres, C.M., Pfeiffer, K., Bleidiessel, G., Grutzner, G., Cardinuad, Ch., Gaboriau, F., Peignon, M.-C., Ahopelto, J., and Heidari, B., J. Vac. Sci. Technol. B 18 (2000) p. 1861.CrossRefGoogle Scholar
33.Igaku, Y., Matsui, S., Ishigaki, H., Fujita, J.-I., Ishida, M., Ochiai, Y., Namatsu, H., Komuro, M., and Hiroshima, H., Jpn. J. Appl. Phys. 41 (2002) p. 4198.CrossRefGoogle Scholar
34.Pisignano, D., Persano, L., Raganato, M.F., Visconti, P., Cingolani, R., Barbarela, G., Favaretto, L., and Gigli, G., Adv. Mater. 16 (2004) p. 525.CrossRefGoogle Scholar
35.Haisma, J., Verheijen, M., van den Heuvel, K., and van den Berg, J., J. Vac. Sci. Technol. B 14 (1996) p. 4124.CrossRefGoogle Scholar
36.Colburn, M., Choi, B.J., Sreenivasan, S.V., Bonnecaze, R.T., and Willson, C.G., Microelectron. Eng. 75 (2004) p. 321.CrossRefGoogle Scholar
37.Reddy, S. and Bonnecaze, R.T., Proc. SPIE–Int. Soc. Opt. Eng. 5751 (2005) p. 200.Google Scholar
38.Dietliker, K., Jung, T., Benkhoff, J., Kura, H., Matsumoto, A., Oka, H., Hristova, D., Gescheidt, G., and Rist, G., Macromol. Symp. 217 (2004) p. 77.CrossRefGoogle Scholar
39.Crivello, J.V., Ma, J., Jiang, F., Hua, J., Ahn, R., and Ortiz, R.A., Macromol. Symp. 215 (2004) p. 165.CrossRefGoogle Scholar
40.Colburn, M., Suez, I., Choi, B.J., Meissl, M., Bailey, T., Sreenivasan, S.V., Ekerdt, J.G., and Willson, C.G., J. Vac. Sci. Technol. B 19 (2001) p. 2685.CrossRefGoogle Scholar
41.Dickey, M.D. and Willson, C.G., PMSE Preprints 90 (2004) p. 24.Google Scholar
42.Kim, E.K., Stacey, N.A., Smith, B.J., Dickey, M.D., Johnson, S.C., Trinque, B.C., and Willson, C.G., J. Vac. Sci. Technol. B 22 (2004) p. 131.CrossRefGoogle Scholar
43.Cheng, X., Guo, L.J., Fu, P.-F., Adv. Mater. 17 (2005) p. 1419.CrossRefGoogle Scholar
44.Rolland, J.P., Van Dam, R.M., Schorzman, D.A., Quake, S.R., and DeSimone, J.M., J. Am. Chem. Soc. 126 (2004) p. 2322.CrossRefGoogle Scholar
45.Chan-Park, M.B., Yan, Y., Neo, W.K., Zhou, W., Zhang, J., and Yue, C.Y., Langmuir 19 (2003) p. 4371.CrossRefGoogle Scholar
46.Gao, J.X., Chan-Park, M.B., Xie, D.Z., Yan, Y.H., Zhou, W.X., Ngoi, B.K.A., and Yue, C.Y., Chem. Mater. 16 (2004) p. 956.CrossRefGoogle Scholar
47.Cramer, N.B., Reddy, S.K., Cole, M., Hoyle, C., and Bowman, C.N., J. Polym. Sci. A 42 (2004) p. 5817.CrossRefGoogle Scholar
48.D., Satas and A.A., Tracton, eds., Coatings Technology Handbook (Marcel Dekker, New York, 2001).Google Scholar
49.Stewart, M.D., Wetzel, J.T., Schmid, G.M., Palmieri, F., Thompson, E., Kim, E.K., Wang, D., Sotodeh, K., Jen, K., Johnson, S.C., Hao, J., Dickey, M.D., Nishimura, Y., Laine, R.M., Resnick, D.J., and Willson, C.G., Proc. SPIE–Int. Soc. Opt. Eng. 5751 (2005) p. 210.Google Scholar
50.Choi, J., Kim, S.G., and Laine, R.M., Macromolecules 37 (2004) p. 99.CrossRefGoogle Scholar