Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T15:51:18.590Z Has data issue: false hasContentIssue false

Imaging, Manipulation, and Spectroscopic Measurements of Nanomagnets by Magnetic Force Microscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Magnetic force microscopy (MFM) is a well-established technique for imaging the magnetic structures of small magnetic particles. In cooperation with external magnetic fields, MFM can be used to study the magnetization switching mechanism of submicrometer-sized magnetic particles. Various MFM techniques allow the measurement of a hysteresis curve of an individual particle, which can then be compared to ensemble measurements. The advantage of using MFM-constructed hysteresis loops is that one can in principle understand the origin of dispersion in switching fields. It is also possible to directly observe the correlation between magnetic particles through careful imaging and control of the external magnetic field. In all of these measurements, attention needs to be paid to avoid artifacts that result from the unavoidable magnetic tip stray field. Control can be achieved by optimizing the MFM operation mode as well as the tip parameters. It is even possible to use the tip stray field to locally and reproducibly manipulate the magnetic-moment state of small particles. In this article, we illustrate these concepts and issues by studying various lithographically patterned magnetic nanoparticles, thus demonstrating the versatility of MFM for imaging, manipulation, and spectroscopic measurements of small particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Martin, Y. and Wickramasinghe, H.K., Appl. Phys. Lett. 50 (1987) p.1455.CrossRefGoogle Scholar
2Sáenz, J.J., Garcia, N., Grütter, P., Meyer, E., Heinzelmann, H., Wiesendanger, R., Rosenthaler, L., Hidber, H.R., and Güntherodt, H.-J., J. Appl. Phys. 62 (1987) p.4293.CrossRefGoogle Scholar
3Grütter, P., Mamin, H.J., and Rugar, D., in Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques, edited by Güntherodt, H.-J. and Wiesendanger, R. (Springer-Verlag, Berlin, 1992) p.151 and references therein.CrossRefGoogle Scholar
4Hartmann, U., Annu. Rev. Mater. Sci. 29 (1999) p.53.Google Scholar
5Rugar, D., H.Mamin, J., Gunther, P., Lambert, S.E., Stern, J.E., McFadyen, I., and Yogi, T., J. Appl. Phys. 68 (1990) p. 1169; P. Grütter, in Forces in Scanning Probe Methods, edited by H.-J. Güntherodt, D. Anselmetti, and E. Meyer, (Kluwer Academic Publishing, Dordrecht, 1995) p.447.CrossRefGoogle Scholar
6Grütter, P., Liu, Y., LeBlanc, P., and Dürig, U., Appl. Phys. Lett. 71 (1997) p.279.Google Scholar
7Hug, H.J., Moser, A., Jung, Th., Fritz, O., Wadas, A., Parashikov, I., and Güntherodt, H.-J., Rev. Sci. Instrum. 64 (1993) p.2920.CrossRefGoogle Scholar
8Moser, A., Hug, H.J., Parashikov, I., Stiefel, B., Fritz, O., Thomas, H., Baratoff, A., Güntherodt, H.-J., and Chaudhari, P., Phys. Rev. Lett. 74 (1995) p.1847.Google Scholar
9Roseman, M. and Grütter, P., Rev. Sci. Instrum. 71 (2000) p.3782.CrossRefGoogle Scholar
10Lozanne, A. de, Supercond. Sci. Technol. 12 (1999) p.R43.Google Scholar
11Liebmann, M., Kaiser, U., Schwarz, A., Wiesendanger, R., Pi, U.H., Noh, T.W., Khim, Z.G., and Kim, D.-W., J. Appl. Phys. 93 (2003) p. 8319.Google Scholar
12Rugar, D., Yannoni, C.S., and Sidles, J.A., Nature 360 (1992) p.563; H.J. Mamin, R. Budakian, B.W. Chui, and D. Rugar, Phys. Rev. Lett. 91 207604 (2003).CrossRefGoogle Scholar
13Chabot, M.D. and Moreland, J., J.Appl. Phys. 93 (2003) p.7897.CrossRefGoogle Scholar
14Lederman, M., Gibson, G.A., and Schultz, S., J.Appl. Phys. 73 (1993) p.6961.Google Scholar
15Rossel, C., Bauer, P., Zelch, D., Hofer, J., Willemin, M., and Keller, H., J. Appl. Phys. 79 (1996) p.8166.Google Scholar
16Lupien, C., Ellman, B., Grütter, P., and Taillefer, L., Appl. Phys. Lett. 74 (1999) p.451.Google Scholar
17Zhu, X., Grütter, P., Metlushko, V., and Ilic, B., Appl. Phys. Lett. 80 (2002) p.4789.Google Scholar
18Gibson, G.A., Smyth, J.F., Schultz, S., and Kern, D.P., IEEE Trans. Magn. 27 (1991) p.5187.Google Scholar
19Chou, S.Y., Proc. IEEE 85 (1997) p.652.CrossRefGoogle Scholar
20Ross, C.A., Smith, H.I., Savas, T., Schattenburg, M., Farhoud, M., Hwang, M., Walsh, M., and Ram, R.J., J.Vac. Sci. Technol., B 17 (1999) p.3168.CrossRefGoogle Scholar
21Gomez, R.D., Burke, E.R., and Mayergoyz, I.D., J.Appl. Phys. 80 (1996) p.342.CrossRefGoogle Scholar
22Cowburn, R.P., J. Phys. D: Appl. Phys. 33 (2000) p.R1.Google Scholar
23Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnar, S. von, Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M., Science 294 (2001) p.1488.CrossRefGoogle Scholar
24Cowburn, R.P. and Welland, M.E., Science 287 (2000) p.1466.CrossRefGoogle Scholar
25Csaba, G., Imre, A., Bernstein, G., Porod, W., and Metlushko, V., IEEE Trans. Nanotech. 1 (2002) p.209.CrossRefGoogle Scholar
26Parish, M.C.B. and Forshaw, M., Appl. Phys. Lett. 83 (2003) p.2046.CrossRefGoogle Scholar
27Dreyer, M., Löhndorf, M., Wadas, A., Wiesendanger, R., Appl. Phys. A 66 (1998) p. 1209.Google Scholar
28Dahlberg, E.D. and Zhu, J.-G., Phys. Today 48 (April 1995) p.34.Google Scholar
29Fernandez, A. and Cerjan, C.J., J. Appl. Phys. 87 (2000) p.13951.Google Scholar
30Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., and Ono, T., Science 289 (2000) p.930.Google Scholar
31Martin, Y., Williams, C.C., and Wickramasinghe, H.K., J. Appl. Phys. 61 (1987) p. 4723.CrossRefGoogle Scholar
32Albrecht, T.R., Grütter, P., Horne, D., and Rugar, D., J.Appl. Phys. 69 (1991) p.668.Google Scholar
33Zhu, X., Grütter, P., Metlushko, V., and Ilic, B., Phys. Rev. B. 66 024423 (2002).Google Scholar
34Schönenberger, C., Alvarado, S.F., Lambert, S.E., and Sanders, I.L., J.Appl. Phys. 67 (1990) p.7278.CrossRefGoogle Scholar
35Zhu, X., Grütter, P., Metlushko, V., and Ilic, B., J.Appl. Phys. 91 (2002) p.7340.CrossRefGoogle Scholar
36Hubert, A. and Schäfer, R., Magnetic Domains: The Analysis of Magnetic Microstructures (Springer-Verlag, Berlin, 1998).Google Scholar
37Zhu, X., Grütter, P., Hao, Y., Castano, F.J., Haratani, S., Ross, C.A., Smith, H.I., Vogeli, B., and H.I. Smith, J.Appl. Phys. 93 (2003) p.1132.CrossRefGoogle Scholar
38Proksch, R., Runge, E., Hansma, P.K., and Foss, S., J.Appl. Phys. 78 (1995) p.3303.CrossRefGoogle Scholar
39Kleiber, M., Kummerlen, F., Lohndorf, M., Wadas, A., Weiss, D., and Wiesendanger, R., Phys. Rev. B 58 (1998) p.5563.Google Scholar
40Zhu, X., Grütter, P., Metlushko, V., Hao, Y., Castano, F.J., Ross, C.A., Ilic, B., and Smith, H.I., J.Appl. Phys. 93 (2003) p.8540.Google Scholar
41Barnes, J.R., O'Shea, S.J., and Welland, M.E., J.Appl. Phys. 76 (1994) p.418.Google Scholar
42Liang, J., Chik, H., Yin, A., and Xu, J., J. Appl. Phys. 91 (2002) p.2544.Google Scholar
43Rave, W., Belliard, L., Labrune, M., Thiaville, A., and Miltat, J., IEEE Trans. Mag. 30 (1994) p.4473.CrossRefGoogle Scholar
44Goddenhenrich, T., Hartmann, U., Anders, M., and Heiden, C., J. Microscopy 152 (1988) p. 527.Google Scholar
45Ohkubo, T., Kishigami, J., Yanagisawa, K., and Kaneko, R., IEEE Trans. Magn. 27 (1991) p.5289.CrossRefGoogle Scholar
46Lutwyche, M.I., Despont, M., Drechsler, U., Dürig, U., Häberle, W., Rothuizen, H., Stutz, R., Widmer, R., Binnig, G.K., and Vettiger, P., Appl. Phys. Lett. 77 (2000) p.3299.CrossRefGoogle Scholar
47Zhu, X., Metlushko, V., Ilic, B., and Grütter, P., IEEE Trans. Magn. 39 (2003) p.2744.Google Scholar