Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:02:25.734Z Has data issue: false hasContentIssue false

III–V compound semiconductor transistors—from planar to nanowire structures

Published online by Cambridge University Press:  14 August 2014

Heike Riel
Affiliation:
Materials Integration and Nanoscale Devices, IBM Research, Switzerland; hei@zurich.ibm.com
Lars-Erik Wernersson
Affiliation:
Lund University, Sweden; lars-erik.wernersson@eit.lth.se
Minghwei Hong
Affiliation:
Department of Physics and Graduate Institute of Applied Physics, National Taiwan University, Taiwan; mhong@phys.ntu.edu.tw
Jesús A. del Alamo
Affiliation:
Microsystems Technology Laboratories, Massachusetts Institute of Technology, USA; alamo@mit.edu
Get access

Abstract

Conventional silicon transistor scaling is fast approaching its limits. An extension of the logic device roadmap to further improve future performance increases of integrated circuits is required to propel the electronics industry. Attention is turning to III–V compound semiconductors that are well positioned to replace silicon as the base material in logic switching devices. Their outstanding electron transport properties and the possibility to tune heterostructures provide tremendous opportunities to engineer novel nanometer-scale logic transistors. The scaling constraints require an evolution from planar III–V metal oxide semiconductor field-effect transistors (MOSFETs) toward transistor channels with a three-dimensional structure, such as nanowire FETs, to achieve future performance needs for complementary metal oxide semiconductor (CMOS) nodes beyond 10 nm. Further device innovations are required to increase energy efficiency. This could be addressed by tunnel FETs (TFETs), which rely on interband tunneling and thus require advanced III–V heterostructures for optimized performance. This article describes the challenges and recent progress toward the development of III–V MOSFETs and heterostructure TFETs—from planar to nanowire devices—integrated on a silicon platform to make these technologies suitable for future CMOS applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haensch, W., Nowak, E.J., Dennard, R.H., Solomon, P.M., Bryant, A., Dokumaci, O.H., Kumar, A., Wang, X., Johnson, J.B., IBM J. Res. Dev. 50 (4/5), 339 (2006).Google Scholar
Sakurai, T., VLSI IEICE Trans. Electron. E87-C, 429 (2004).Google Scholar
Iwai, H., Microelectron. Eng. 86, 1520 (2009).Google Scholar
Frank, D.J., IBM J. Res. Dev. 46, 235 (2002).Google Scholar
Theis, T.N., Solomon, P.M., Proc. IEEE 98, 2005 (2010).Google Scholar
Kuhn, K.J., IEEE Trans. Electron Devices 59 (7), 1813 (2012).CrossRefGoogle Scholar
Colinge, J.P., Gao, H.H., Romano-Rodriguez, A., Maes, H., Claeys, C., Tech. Dig. Int. Electron Devices Mtg. 595 (1990).Google Scholar
Ferain, I., Colinge, C.A., Colinge, J.-P., Nature 479, 310 (2011).Google Scholar
del Alamo, J.A., Nature 479, 317 (2011).Google Scholar
Shang, H., Frank, M.M., Gusev, E.P., Chu, J.O., Bedell, S.W., Guarini, K.W., Ieong, M., IBM J. Res. Dev. 50 (4/5), 377 (2006).Google Scholar
Jeong, C., Antoniadis, D.A., Lundstrom, M.S., IEEE Trans. Electron Devices 56, 2762 (2009).CrossRefGoogle Scholar
Antoniadis, D.A., Aberg, I., Ni Chleirigh, C., Nayfeh, O.M., Khakifirooz, A., Hoyt, J.L., IBM J. Res. Dev. 50 (4/5), 363 (2006).Google Scholar
Kim, D.-H., del Alamo, J.A., Antoniadis, D.A., Brar, B., IEEE Int. Electron. Devices Mtg. 861 (2009).Google Scholar
Hock, G., Hackbarth, T., Erben, U., Kohn, E., Konig, U., Electron. Lett. 34, 1888 (1998).Google Scholar
Bennett, B., Ancona, M., Boos, J., Canedy, C., Khan, S., J. Cryst. Growth 311, 47 (2008).Google Scholar
Radosavljevic, M., Ashley, T., Andreev, A., Coomber, S.D., Dewey, G., Emeny, M.T., Fearn, M., Hayes, D.G., Hilton, K.P., Hudait, M.K., Jefferies, R., Martin, T., Pillarisetty, R., Rachmady, W., Rakshit, T., Smith, S.J., Uren, M.J., Wallis, D.J., Wilding, P.J., Chau, R., IEEE Int. Electron Devices Mtg. 1 (2008).Google Scholar
Bennett, B.R., Ancona, M.G., Boos, J.B., Shanabrook, B.V., Appl. Phys. Lett. 91, 042104 (2007).Google Scholar
Bernstein, K., Cavin, R.K., Porod, W., Seabaugh, A., Welser, J., Proc. IEEE 98 (12), 2169 (2010).CrossRefGoogle Scholar
Ionescu, A.M., Riel, H., Nature 479, 329 (2011).Google Scholar
Seabaugh, A.C., Zhang, Q., Proc. IEEE 98, 2095 (2010).Google Scholar
Kim, D.H., del Alamo, J.A., IEEE Electron Devices Lett. 31, 806 (2010).Google Scholar
del Alamo, J.A., Proc. ESSDERC-ESSCIRC 1621 (2013).Google Scholar
del Alamo, J.A., Antoniadis, D., Guo, A., Kim, D.-H., Kim, T.-W., Lin, J., Lu, W., Vardi, A., Zhao, X., IEEE Int. Electron Devices Mtg. 24 (2013).Google Scholar
Chang, S.W., Li, X., Oxland, R., Wang, S.W., Wang, C.H., Contreras-Guerrero, R., Bhuwalka, K.K., Doornbos, G., Vasen, T., Holland, M.C., Vellianitis, G., van Dal, M.J.H., Duriez, B., Edirisooriya, M., Rojas-Ramirez, J.S., Ramvall, P., Thoms, S., Peralagu, U., Hsieh, C.H., Chang, Y.S., Yin, K.M., Lind, E., Wernersson, L.-E., Droopad, R., Thayne, I., Passlack, M., Diaz, C.H., IEEE Int. Electron Devices Mtg. 417 (2013).Google Scholar
Lin, J.. Zhao, X., Yu, T., Antoniadis, D.A., del Alamo, J.A., IEEE Int. Electron Devices Mtg. 421 (2013).Google Scholar
Kim, D.-H., Brar, B., del Alamo, J.A., IEEE Int. Electron Devices Mtg. 319 (2011).Google Scholar
Taur, Y., Ning, T.H., Fundamentals of Modern VLSI Devices (Cambridge University Press, New York, 1998).Google Scholar
Nicollian, E.H., Brews, J.R., MOS Physics and Technology (Wiley, New York, 2003).Google Scholar
Hong, M., Kwo, J., Lin, T.D., Huang, M.L., MRS Bull. 34, 514 (2009).Google Scholar
Hong, M., Passlack, M., Mannaerts, J.P., Kwo, J., Chu, S.N.G., Moriya, N., Hou, S.Y., Fratello, V.J., J. Vac. Sci. Technol. B 14, 2297 (1996).Google Scholar
Hong, M., Lu, Z.H., Kwo, J., Kortan, A.R., Mannaerts, J.P., Krajewski, J.J., Hsieh, K.C., Chou, L.J., Cheng, K.Y., Appl. Phys. Lett. 76, 312 (2000).CrossRefGoogle Scholar
Hong, M., Kwo, J., Kortan, A.R., Mannaerts, J.P., Sergent, A.M., Science 283, 1897 (1999).Google Scholar
Pi, T.W., Lin, H.Y., Chiang, T.H., Liu, Y.T., Chang, Y.C., Lin, T.D., Wertheim, G.K., Kwo, J., Hong, M., Appl. Surf. Sci. 284, 601 (2013).CrossRefGoogle Scholar
Lin, C.A., Chiu, H.C., Chiang, T.H., Lin, T.D., Chang, Y.H., Chang, W.H., Chang, Y.C., Wang, W.E., Dekoster, J., Hoffmann, T.Y., Hong, M., Kwo, J., Appl. Phys. Lett. 98, 109901 (2011).Google Scholar
Brammertz, G., Martens, K., Sioncke, S., Delabie, A., Caymax, M., Meuris, M., Heyns, M., Appl. Phys. Lett. 91, 133510 (2007).Google Scholar
Ren, F., Hong, M., Hobson, W.S., Kuo, J.M., Lothian, J.R., Mannaerts, J.P., Kwo, J., Chen, Y.K., Cho, A.Y., Tech. Dig. Int. Electron Devices Mtg. 943 (1996).Google Scholar
Ren, F., Kuo, J.M., Hong, M., Hobson, W.S., Lothian, J.R., Lin, J., Tsai, H.S., Mannaerts, J.P., Kwo, J., Chu, S.N.G., Chen, Y.K., Cho, A.Y., IEEE Electron Devices Lett. 19, 309 (1998).Google Scholar
Wang, Y.C., Hong, M., Kuo, J.M., Mannaerts, J.P., Kwo, J., Tsai, H.S., Krajewski, J.J., Weiner, J.S., Chen, Y.K., Cho, A.Y., Mater. Res. Soc. Symp. Proc. 573, Hasegawa, H., Hong, M., Lu, Z.H., Pearton, S.J., Eds. (Materials Research Society, Warrendale, PA, 1999), p. 219.Google Scholar
Lin, T.D., Chang, W.H., Chu, R.L., Chang, Y.C., Chang, Y.H., Lee, M.Y., Hong, P.F., Chen, M.-C., Kwo, J., Hong, M., Appl. Phys. Lett. 103, 253509 (2013).Google Scholar
Ye, P.D., Wilk, G.D., Yang, B., Kwo, J., Chu, S.N.G., Nakahara, S., Gossmann, H.-J.L., Mannaerts, J.P., Hong, M., Ng, K.K., Bude, J., Appl. Phys. Lett. 83, 180 (2003).Google Scholar
Ye, P.D., Wilk, G.D., Kwo, J., Yang, B., Gossmann, H.J.L., Frei, M., Chu, S.N.G., Mannaerts, J.P., Sergent, M., Hong, M., Ng, K.K., Bude, J., IEEE Electron Devices Lett. 24, 209 (2003).Google Scholar
Frank, M.M., Wilk, G.D., Starodub, D., Gustafsson, T., Garfunkel, E., Chabal, Y.J., Grazul, J., Muller, D.A., Appl. Phys. Lett. 86, 152904 (2005).Google Scholar
Huang, M.L., Chang, Y.C., Chang, C.H., Lee, Y.J., Chang, P., Kwo, J., Wu, T.B., Hong, M., Appl. Phys. Lett. 87, 252104 (2005).CrossRefGoogle Scholar
Milojevic, M., Hinkle, C.L., Aguirre-Tostado, F.S., Kim, H.C., Vogel, E.M., Kim, J., Wallace, R.M., Appl. Phys. Lett. 93, 252905 (2008).Google Scholar
Hinkle, C.L., Sonnet, A.M., Vogel, E.M., McDonnell, S., Hughes, G.J., Milojevic, M., Lee, B., Aguirre-Tostado, F.S., Choi, K.J., Kim, H.C., Kim, J., Wallace, R.M., Appl. Phys. Lett. 92, 071901 (2008).Google Scholar
Xuan, Y., Wu, Y.Q., Lin, H.C., Shen, T., Ye, P.D., IEEE Electron Devices Lett. 28, 935 (2007).Google Scholar
Xuan, Y., Lin, H.C., Ye, P.D., Wilk, G.D., Appl. Phys. Lett. 88 (26), 263518 (2006).Google Scholar
Li, N., Harmon, E.S., Hyland, J., Salzman, D.B., Ma, T.P., Xuan, Y., Ye, P.D., Appl. Phys. Lett. 92 (14), 143507 (2008).Google Scholar
Wu, Y., Xuan, Y., Ye, P.D., IEEE Proc. Dev. Res. Conf. 117118 (2007).Google Scholar
Robertson, J., Falabretti, B., J. Appl. Phys. 100, 014111 (2006).Google Scholar
Trinh, H.D., Chang, E.Y., Wu, P.W., Wong, Y.Y., Chang, C.T., Hsieh, Y.F., Yu, C.C., Nguyen, H.Q., Lin, Y.C., Lin, K.L., Hudait, M.K., Appl. Phys. Lett. 97, 042903 (2010).CrossRefGoogle Scholar
O’Connor, E., Brennan, B., Djara, V., Cherkaoui, K., Monaghan, S., Newcomb, S.B., Contreras, R., Milojevic, M., Hughes, G., Pemble, M.E., Wallace, R.M., Hurley, P.K., J. Appl. Phys. 109, 024101 (2011).Google Scholar
Ok, I., Lee, J.C., in Fundamentals of III-V Semiconductor MOSFETs, Oktyabrsky, S., Ye, P.D., Eds. (Springer Verlag, New York, 2010), p. 307.Google Scholar
Wu, Y.D., Lin, T.D., Chiang, T.H., Chang, Y.C., Chiu, H.C., Lee, Y.J., Hong, M., Lin, C.A., Kwo, J., J. Vac. Sci. Technol. B 28, C3H10 (2010).Google Scholar
Cheng, C.-W., Apostolopoulos, G., Fitzgerald, E.A., J. Appl. Phys. 109, 023714 (2011).Google Scholar
Chen, Y.-T., Zhao, H., Wang, Y., Xue, F., Zhou, F., Lee, J.C., Appl. Phys. Lett. 96, 103506 (2010).Google Scholar
El Kazzi, M., Czornomaz, L., Rossel, C., Gerl, C., Caimi, D., Siegwart, H., Fompeyrine, J., Marchiori, C., Appl. Phys. Lett. 100 (6), 063505 (2012).CrossRefGoogle Scholar
Lin, T.D., Chang, Y.H., Lin, C.A., Huang, M.L., Lee, W.C., Kwo, J., Hong, M., Appl. Phys. Lett. 100, 172110 (2012).Google Scholar
Radosavljevic, M., Chu-Kung, B., Corcoran, S., Dewey, G., Hudait, M.K., Fastenau, J.M., Kavalieros, J., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Rachmady, W., Shah, U., Chau, R., Tech. Dig. Int. Electron Devices Mtg. 319 (2009).Google Scholar
Sonnet, A.M., Galatage, R.V., Hurley, P.K., Pelucchi, E., Thomas, K.K., Gocalinska, A., Huang, J., Goel, N., Bersuker, G., Kirk, W.P., Hinkle, C.L., Wallace, R.M., Vogel, E.M., Appl. Phys. Lett. 98, 193501 (2011).Google Scholar
Sonnet, A.M., Galatage, R.V., Hurley, P.K., Pelucchi, E., Thomas, K., Gocalinska, A., Huang, J., Goel, N., Bersuker, G., Kirk, W.P., Hinkle, C.L., Vogel, E.M., Microelectron. Eng. 88, 1083 (2011).Google Scholar
Lu, W., Guo, A., Vardi, A., del Alamo, J.A., IEEE Electron. Devices Lett. 35, 178 (2014).Google Scholar
Dormaier, R., Mohney, S.E., J. Vac. Sci. Technol. B 30, 031209 (2012).Google Scholar
Baraskar, A., Gossard, A.C., Rodwell, M.J.W., J. Appl. Phys. 114, 154516 (2013).Google Scholar
Singisetti, U., Wistey, M.A., Zimmerman, J.D., Thibeault, B.J., Rodwell, M.J.W., Gossard, A.C., Bank, S.R., Appl. Phys. Lett. 93, 183502 (2008).Google Scholar
Singisetti, U., Crook, A.M., Lind, E., Zimmerman, J.D., Wistey, M.A., Gossard, A.C., Rodwell, M.J.W., IEEE Dev. Res. Conf. 149 (2007).Google Scholar
Crook, A.M., Lind, E., Griffith, Z., Rodwell, M.J.W., Zimmerman, J.D., Gossard, A.C., Bank, S.R., Appl. Phys. Lett. 91, 192114 (2007).Google Scholar
Law, J.J.M., Carter, A.D., Lee, S., Gossard, A.C., Rodwell, M.J.W., IEEE Dev. Res. Conf. 199 (2012).Google Scholar
Kim, S.H., Yokoyama, M., Taoka, N., Iida, R., Lee, S., Nakane, R., Urabe, Y., Miyata, N., Yasuda, T., Yamada, H., Fukuhara, N., Hata, M., Takenaka, M., Takagi, S., Appl. Phys. Express 4, 024201 (2011).Google Scholar
Ivana, E., Kong, Y.-J., Subramanian, S., Zhou, Q., Pan, J., Yeo, Y.-C., Solid State Electron. 78, 62 (2012).Google Scholar
Kim, S.H., Yokoyama, M., Taoka, N., Iida, R., Lee, S., Nakane, R., Urabe, Y., Miyata, N., Yasuda, T., Yamada, H., Fukuhara, N., Hata, M., Takenaka, M., Takagi, S., IEEE Int. Electron Devices Mtg. 596 (2010).Google Scholar
Czornomaz, L.L., El Kazzi, M., Hopstaken, M., Caimi, D., Mächler, P., Rossel, C., Bjoerk, M., Marchiori, C., Siegwart, H., Fompeyrine, J., Solid State Electron. 74, 71 (2012).Google Scholar
Egard, M., Ohlsson, L., Arlelid, M., Persson, K.-M., Borg, M., Lenrick, F., Wallenberg, R., Lind, E., Wernersson, L.-E., IEEE Electron Devices Lett. 33, 369 (2012).Google Scholar
Gupta, S., Gong, X., Zhang, R., Yeo, Y.-C., Takagi, S., Saraswat, K., MRS Bull. in press (2014).Google Scholar
Oktyabrsky, S., in Fundamentals of III-V Semiconductor MOSFETs (Springer Verlag, New York), pp. 349378.Google Scholar
Yokoyama, M., Kim, S.H., Zhang, R., Taoka, N., Urabe, Y., Maeda, T., Takagi, H., Yasuda, T., Yamada, H., Ichikawa, O., Fukuhara, N., Hata, M., Sugiyama, M., Nakano, Y., Takenaka, M., Takagi, S., IEEE VLSI Tech. Symp. 60 (2011).Google Scholar
Czornomaz, L., Daix, N., Caimi, D., Sousa, M., Erni, R., Rossell, M.D., El-Kazzi, M., Rossel, C., Marchiori, C., Uccelli, E., Richter, M., Siegwart, H., Fompeyrine, J., IEEE Int. Electron Devices Mtg. 517 (2012).Google Scholar
Nah, J., Fang, H., Wang, C., Takei, K., Lee, M.H., Plis, E., Krishna, S., Javey, A., Nano Lett. 12, 3592 (2012).Google Scholar
Fiorenza, J.G., Park, J.-S., Hydrick, J., Li, J., Li, J., Curtin, M., Carroll, M., Lochtefeld, A., ECS Trans. 33, 963 (2010).Google Scholar
Waldron, N., Wang, G., Nguyen, N.D., Orzali, T., Merckling, C., Brammertz, G., Ong, P., Winderickx, G., Hellings, G., Eneman, G., Caymax, M., Meuris, M., Horiguchi, N., Thean, A., ECS Trans. 45, 115 (2012).CrossRefGoogle Scholar
Tomioka, K., Motohisa, J., Hara, S., Fukui, T., Nano Lett. 8, 3475 (2008).Google Scholar
Plissard, S., Larrieu, G., Wallart, X., Caroff, P., Nanotechnology 22, 275602 (2011).Google Scholar
Alarcón-Lladó, E., Conesa-Boj, S., Wallart, X., Caroff, P., Fontcuberta i Morral, A., Nanotechnology 24, 405707 (2013).Google Scholar
Hertenberger, S., Rudolph, D., Bichler, M., Finley, F.F., Abstreiter, G., Koblmuller, G., J. Appl. Phys. 108, 114316 (2010).Google Scholar
Conesa-Boj, S., Kriegner, D., Han, X.-L., Plissard, S., Wallart, X., Stangl, J., Fontcuberta i Morral, A., Caroff, P., Nano Lett. 14, 326 (2014).Google Scholar
Tomioka, K., Yoshimura, M., Fukui, T., Nano Lett. 13, 5822 (2013).Google Scholar
Wagner, R.S., Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
Johansson, J., Wacaser, B.A., Dick, K.A., Seifert, W., Nanotechnology 17, S355 (2006).Google Scholar
Das Kanungo, P., Schmid, H., Björk, M.T., Gignac, L.M., Breslin, C., Bruley, J., Bessire, C.D., Riel, H., Nanotechnology 24, 225304 (2013).Google Scholar
Borg, M., Schmid, H., Moselund, K.E., Signorello, G., Gignac, L., Bruley, J., Breslin, C., Das Kanungo, P., Werner, P., Riel, H., Nano Lett. 14 (4), 1914 (2014).Google Scholar
Radosavljevic, M., Dewey, G., Basu, D., Boardman, J., Chu-Kung, B., Fastenau, J.M., Kabehie, S., Kavalieros, J., Le, V., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Pan, L., Pillarisetty, R., Rachmady, W., Shah, U., Then, H.W., Chau, R., IEEE Int. Electron. Devices Mtg. 765 (2011).Google Scholar
Gu, J.J., Wang, X.W., Wu, H., Shao, J., Neal, A.T., Manfra, M.J., Gordon, R.G., Ye, P.D., IEEE Int. Electron Devices Mtg. 633 (2012).Google Scholar
Lin, J., Antoniadis, D.A., del Alamo, J.A., IEEE Int. Electron Devices Mtg. 757 (2012).Google Scholar
Kim, T.W., Kim, D.-H., Koh, D.H., Kwon, H.M., Baek, R.H., Veksler, D., Huffman, C., Matthews, K., Oktyabrsky, S., Greene, A., Ohsawa, Y., Ko, A., Nakajima, H., Takahashi, M., Nishizuka, T., Ohtake, H., Banerjee, S.K., Shin, S.H., Ko, D.-H., Kang, C., Gilmer, D., Hill, R.J.W., Maszara, W., Hobbs, C., Kirsch, P.D., IEEE Int. Electron Devices Mtg. 425 (2013).Google Scholar
Kim, D.-H., del Alamo, J.A., IEEE Int. Electron Devices Mtg. 719 (2008).Google Scholar
Roddaro, S., Nilsson, K., Astromskas, G., Samuelson, L., Wernersson, L.-E., Karlström, O., Wacker, A., Appl. Phys. Lett. 92, 253509 (2008).Google Scholar
Mensch, P., Moselund, K.E., Karg, S., Lörtscher, E., Björk, M.T., Riel, H., IEEE Trans. Nanotechnol. 12 (3), 279 (2013).Google Scholar
Persson, K.-M., Lind, E., Dey, A.W., Thelander, C., Sjoland, H., Wernersson, L.-E., IEEE Electron Devices Lett. 31 (5), 428 (2010).Google Scholar
Persson, K.-M., Berg, M., Borg, M.B., Wu, J., Johansson, S., Svensson, J., Jansson, K., Lind, E., Wernersson, L.-E., IEEE Trans. Electron Devices 60 (9), 2761 (2013).Google Scholar
Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., Lieber, C.M., Nano Lett. 7, 3214 (2007).Google Scholar
Dey, A.W., Thelander, C., Lind, E., Dick, K.A., Borg, B.M., Borgstrom, M., Nilsson, P., Wernersson, L.-E., IEEE Electron Devices Lett. 33, 791 (2012).CrossRefGoogle Scholar
Zota, C.B., Wernersson, L.-E., Lind, E., IEEE Proc. Dev. Res. Conf. 209 (2014).Google Scholar
Tomioka, K., Yoshimura, M., Fukui, T., Nature 488, 189 (2012).Google Scholar
Thelander, C., Froberg, L.E., Rehnstedt, C., Samuelson, L., Wernersson, L.-E., IEEE Electron Devices Lett. 29, 206 (2008).Google Scholar
Zhao, X., Lin, J., Heidelberger, C., Fitzgerald, E.A., del Alamo, J.A., Int. Electron Devices Mtg. (IEEE, Washington DC, 2013), pp. 695698.Google Scholar
Zota, C.B., Wernersson, L.-E., Lind, E., IEEE Electron Devices Lett. 35, 342 (2014).Google Scholar
Ghalamestani, S., Berg, M., Dick, K., Wernersson, L.-E., J. Cryst. Growth 332, 12 (2011).Google Scholar
Johansson, S., Memisevic, E., Wernersson, L.-E., IEEE Electron Devices Lett. 35, 518 (2014).Google Scholar
Persson, K.-M., Berg, M., Sjöland, H., Lind, E., Wernersson, L.-E., Electron. Lett. 50, 321 (2014).Google Scholar
De Michielis, L., Lattanzio, L., Moselund, K., Riel, H., Ionescu, A.M., IEEE Electron Devices Lett. 34 (6), 726 (2013).Google Scholar
Verhulst, A.S., Vandenberghe, W.G., Maex, K., de Gendt, S., Heyns, M.M., Groeseneken, G., IEEE Electron Devices Lett. 29, 1398 (2008).Google Scholar
Koswatta, S.O., Koester, S.J., Haensch, W., IEEE Trans. Electron Devices 57, 3222 (2010).Google Scholar
Luisier, M., Klimeck, G., IEEE Int. Electron Devices Mtg. 1 (2009).Google Scholar
Wang, L., Yu, E., Taur, Y., Asbeck, P., IEEE Electron Devices Lett. 31, 432 (2010).Google Scholar
Knoch, J., Appenzeller, J., IEEE Electron Devices Lett. 31, 305 (2010).Google Scholar
Avci, U.E., Rios, R., Kuhn, K., Young, I.A., IEEE Symp. VLSI Technol. Dig. 124 (2011).Google Scholar
Dewey, G., Chu-Kung, B., Boardman, J., Fastenau, J.M., Kavalieros, J., Kotlyar, R., Liu, W.K., Lubyshev, D., Metz, M., Mukherjee, N., Oakey, P., Pillarisetty, R., Radosavljevic, M., Then, H.W., Chau, R., Tech. Dig. Int. Electron Devices Mtg. 785 (2011).Google Scholar
Zhou, G., Lu, Y., Li, R., Zhang, Q., Liu, Q., Vasen, T., Zhu, H., Kuo, J.-M., Kosel, T., Wistey, M., Fay, P., Seabaugh, A., Xing, H., IEEE Electron Devices Lett. 33 (6), 782 (2012).Google Scholar
Mohata, D., Rajamohanan, B., Mayr, T., Hudait, M., Fastenau, J., Lubyshev, D., Liu, A.W.K., Datta, S., IEEE Electron Devices Lett. 33 (11), 1568 (2012).Google Scholar
Zhou, G., Li, R., Vasen, T., Qi, M., Chae, S., Lu, Y., Zhang, Q., Zhu, H., Kuo, J.-M., Kosel, T., Wistey, M., Fay, P., Seabaugh, A., Xing, H., IEEE Int. Electron Devices Mtg. 32.6.1 (2012).Google Scholar
Dey, A., Borg, M., Ganjipour, B., Ek, M., Dick Thelander, K., Lind, E., Thelander, C., Wernersson, L.E., IEEE Electron Devices Lett. 34 (2), 211 (2013).Google Scholar
Bijesh, R., Liu, H., Madan, H., Mohata, D., Li, W., Nguyen, N.V., Gundlach, D., Richter, C.A., Maier, J., Wang, K., Clarke, T., Fastenau, J.M., Loubychev, D., Liu, W.K., Narayanan, V., Datta, S., IEEE Int. Electron Devices Mtg. 28.2.1 (2013).Google Scholar
Schmid, H., Moselund, K.E., Björk, M.T., Richter, M., Ghoneim, H., Bessire, C.D., Riel, H., IEEE 69th Device Res. Conf. Dig. 181 (2011).Google Scholar
Moselund, K.E., Schmid, H., Bessire, C., Björk, M.T., Ghoneim, H., Riel, H., IEEE Electron Devices Lett. 33 (10), 1453 (2012).Google Scholar
Tomioka, K., Fukui, T., Appl. Phys. Lett. 104, 073507 (2014).Google Scholar
Riel, H., Moselund, K.E., Bessire, C., Björk, M.T., Schenk, A., Ghoneim, H., Schmid, H., IEEE Intl. Electron Devices Mtg. 16.6.1 (2012).Google Scholar
Li, R., Lu, Y., Zhou, G., Liu, Q., Chae, S.D., Vasen, T., Wan, S.H., Zhang, Q., Fay, P., Kosel, T., Wistey, M., Xing, H., Seabaugh, A., IEEE Electron Devices Lett. 33, 363 (2012).Google Scholar
Zhao, H., Chen, Y., Wang, Y., Zhou, F., Xue, F., Lee, J., IEEE Trans. Electron Devices 58, 2990 (2011).Google Scholar
Mookerjea, S., Mohata, D., Krishnan, R., Singh, J., Vallett, A., Ali, A., Mayer, T., Narayanan, V., Schlom, D., Liu, A., Datta, S., IEEE Intl. Electron Devices Mtg. 13 (2009).Google Scholar
Noguchi, M., Kim, S.H., Yokoyama, M., Ji, S.M., Ichikawa, O., Osada, T., Hata, M., Takenaka, M., Takagi, S., IEEE Int. Electron Devices Mtg. 28.1.1 (2013).Google Scholar
Tomioka, K., Yoshimura, M., Fukui, T., 2012 Symposium on VLSI Technology, 47–48 (2012).Google Scholar
Kim, S.H., Kam, H., Hu, C., Liu, T.-J. K., VLSI Symposium Technical Digest, 178, 2009.Google Scholar
Walke, A.M., Vandooren, A., Rooyackers, R., Leonelli, D., Hikavyy, A., Loo, R., Verhulst, A.S., Kao, K.-H., Huyghebaert, C., Groeseneken, G., Rao, V.R., Bhuwalka, K.K., Heyns, M.M., Collaert, N., Thean, A.V.-Y., IEEE Trans. Electron Devices 61, 707 (2014).Google Scholar
Jeon, K., Loh, W.-Y., Patel, P., Kang, C.Y., Oh, J., Bowonder, A., Park, C., Park, C.S., Smith, C., Majhi, P., Tseng, H.-H., Jammy, R., King Liu, T.-J., Hu, C., 2010 Symposium on VLSI Technology, 121 (2010).Google Scholar
Björk, M.T., Schmid, H., Breslin, C., Gignac, L., Riel, H., J. Cryst. Growth, 344, 31 (2012).Google Scholar