Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T19:59:54.701Z Has data issue: false hasContentIssue false

Graphene investigated by synchrotron radiation

Published online by Cambridge University Press:  23 November 2012

J. Hicks
Affiliation:
School of Physics, Georgia Institute of Technology; hicks@gatech.edu
E.H. Conrad
Affiliation:
School of Physics, Georgia Institute of Technology; edward.conrad@physics.gatech.edu
Get access

Abstract

From the earliest days of graphene electronics, epitaxial graphene grown on SiC has been the focus of both academic and industrial research because it is potentially scalable to large electronic systems. Yet, epitaxial graphene electronics is still in its infancy. In the race to demonstrate devices, the fundamental work of understanding and controlling this material has just begun. It is entirely possible that graphene’s potential for electronics lies in new ways of thinking about electronics. In that case, significant advances will come only after serious materials physics and engineering research. One of the arguably most important properties of epitaxial graphene is that it can be studied with a variety of analytical probes beyond electron-transport measurements. Synchrotron studies have been key to understanding a wide variety of properties, including the role of the graphene–SiC interface in graphene’s transport properties, how the films are doped, whether and how a bandgap (critical to digital electronics) can be formed, and how metals and insulators can be grown on graphene for critical ohmic contacts and gate structures. These important studies are discussed in this review.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Van Bommel, A.J., Crombeen, J.E., Van Tooren, A., Surf. Sci. 48, 463 (1975).CrossRefGoogle Scholar
Hass, J., de Heer, W.A., Conrad, E.H., J. Phys.: Condens. Matter 20, 323202 (2008).Google Scholar
Rutter, G.M., Guisinger, N.P., Crain, J.N., Jarvis, E.A.A., Stiles, M.D., Li, T., First, P.N., Stroscio, J.A., Phys. Rev. B 76, 235416 (2007).CrossRefGoogle Scholar
Hass, J., Millán-Otoya, J.E., First, P.N., Conrad, E.H., Phys. Rev. B 78, 205424 (2008).CrossRefGoogle Scholar
Ohta, T., Bostwick, A., McChesney, J.L., Seller, T., Horn, K., Rotenberg, E., Phys. Rev. Lett. 98, 206802 (2007).CrossRefGoogle Scholar
Zhou, S.Y., Gweon, G.-H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.-H., Guinea, F., Castro Neto, A.H., Lanzara, A., Nat. Mater. 6 770 (2007).CrossRefGoogle Scholar
Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E., Science 313, 951 (2006).CrossRefGoogle Scholar
Hass, J., Feng, R., Li, T., Li, X., Song, Z., de Heer, W.A., First, P.N., Conrad, E.H., Jeffrey, C.A., Berger, C., Appl. Phys. Lett. 89, 143106 (2006).CrossRefGoogle Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T., Nat. Mater. 8, 203 (2009).CrossRefGoogle Scholar
Riedl, C., Coletti, C., Starke, U., J. Phys. D: Appl. Phys. 43, 374009 (2010).CrossRefGoogle Scholar
Hicks, J., Shepperd, K., Wang, F., Conrad, E.H., J. Phys. D: Appl. Phys. 45, 154002 (2012).CrossRefGoogle Scholar
Bostwick, A., Ohta, T., Seyller, T., Horn, K., Rotenberg, E., Nat. Phys. 3, 36 (2007).CrossRefGoogle Scholar
Norimatsu, W., Kusunoki, M., Phys. Rev. B 81, 161410(R) (2010).CrossRefGoogle Scholar
Varchon, F., Feng, R., Hass, J., Li, X., Ngoc Nguyen, B., Naud, C., Mallet, P., Veuillen, J.-Y., Berger, C., Conrad, E.H., Magaud, L., Phys. Rev. Lett. 99, 126805 (2007).CrossRefGoogle Scholar
Emtsev, K.V., Speck, F., Seyller, Th., Ley, L., Riley, J.D., Phys. Rev. B 77, 155303 (2008).CrossRefGoogle Scholar
Riedl, C., Zakharov, A.A., Starke, U., Appl. Phys. Lett. 93, 033106 (2008).CrossRefGoogle Scholar
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U., Phys. Rev. Lett. 103, 246804 (2009).CrossRefGoogle Scholar
Hass, J., Feng, R., Millàn-Otoya, J.E., Li, X., Sprinkle, M., First, P.N., Berger, C., de Heer, W.A., Conrad, E.H., Phys. Rev. B 75, 214109 (2007).CrossRefGoogle Scholar
Bernhardt, J., Nerding, M., Starke, U., Heinz, K., Mater. Sci. Eng. B 61, 206 (1999).Google Scholar
Siegel, D.A., Park, C.-H., Hwang, C., Deslippe, J., Fedorov, A.V., Louie, S.G., Lanzara, A., Proc. Natl. Acad. Sci. U.S.A. 108, 11365 (2011).CrossRefGoogle Scholar
Starke, U., Riedl, C., J. Phys.: Condens. Matter 21, 134016 (2009).Google Scholar
Mathieu, C., Barrett, N., Rault, J., Zhang, B., de Heer, W.A., Berger, C., Conrad, E.H., Renault, O., Phys. Rev. B 83, 235436 (2011).CrossRefGoogle Scholar
Hass, J., Varchon, F., Millàn-Otoya, J.E., Sprinkle, M., Sharma, N., de Heer, W.A., Berger, C., First, P.N., Magaud, L., Conrad, E.H., Phys. Rev. Lett. 100, 125504 (2008).CrossRefGoogle Scholar
Sprinkle, M., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fèvre, P., Bertran, F., Tinkey, H., Clark, M.C., Soukiassian, P., Martinotti, D., Hass, J., Conrad, E.H., J. Phys. D: Appl. Phys. 43, 374006 (2010).CrossRefGoogle Scholar
Shallcross, S., Sharma, S., Kandelaki, E., Pankratov, O.A., Phys. Rev. B 81, 165105 (2010).CrossRefGoogle Scholar
Hutcheon, J., in Modern Aspects of Graphite Technology, Blackman, L., Ed. (Academic Press, London, 1970), pp. 4978.Google Scholar
Franklin, R.E., Acta Crystallogr. 4, 253 (1951).CrossRefGoogle Scholar
Cançado, L.G., Pimenta, M.A., Saito, R., Jorio, A., Ladeira, L.O., Grüeneis, A., Souza-Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 66, 035415 (2002).CrossRefGoogle Scholar
Wang, F., Shepperd, K., Hicks, J., Nevius, M.S., Tinkey, H., Tejeda, A., Taleb-Ibrahimi, A., Bertran, F., Le Fèvre, P., Torrance, D.B., First, P.N., de Heer, W.A., Zakharov, A.A., Conrad, E.H., Phys. Rev. B 85, 165449 (2012).CrossRefGoogle Scholar
Lopes dos Santos, J.M.B., Peres, N.M.R., Castro Neto, A.H., Phys. Rev. Lett. 99, 256802 (2007).CrossRefGoogle Scholar
Mele, E.J., Phys. Rev. B 81, 161405(R) (2010).CrossRefGoogle Scholar
Bostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., MacDonald, A.H., Rotenberg, E., Science 328, 999 (2010).CrossRefGoogle Scholar
Calandra, M., Mauri, F., Phys. Rev. Lett. 95, 237002 (2005).CrossRefGoogle Scholar
Jensen, E., Bartynski, R.A., Gustafsson, T., Plummer, E.W., Phys. Rev. Lett. 52, 2172 (1984).CrossRefGoogle Scholar
Lundqvist, B., Phys. Kondens. Mater. 6, 193 (1967).Google Scholar
Hwang, E.H., Das Sarma, S., Phys. Rev. B 77, 081412 (2008).CrossRefGoogle Scholar
Polini, M., Asgari, R., Borghi, G., Barlas, Y., Pereg-Barnea, T., MacDonald, A.H., Phys. Rev. B 77, 081411 (2008).CrossRefGoogle Scholar
Hicks, J., Sprinkle, M., Shepperd, K., Wang, F., Tejeda, A., Taleb-Ibrahimi, A., Bertran, F., Le Fèvre, P.de Heer, W.A., Berger, C., Conrad, E.H., Phys. Rev. B 83, 205403 (2011).CrossRefGoogle Scholar
Trambly de Laissardière, G., Mayou, D., Magaud, L., Nano Lett. 10, 804 (2010).CrossRefGoogle Scholar
Mele, E.J., Phys. Rev. B 84, 235439 (2011).CrossRefGoogle Scholar
Duplock, E.J., Scheffler, M., Lindan, P.J.D., Phys. Rev. Lett. 92, 225502 (2004).CrossRefGoogle Scholar
Pedersen, T.G., Flindt, C., Pedersen, J., Mortensen, N.A., Jauho, A.-P., Pedersen, K., Phys. Rev. Lett. 100, 136804 (2008).CrossRefGoogle Scholar
Wakabayashi, K., Fujita, M., Ajiki, H., Sigrist, M., Phys. Rev. B 59, 8271 (1999).CrossRefGoogle Scholar
Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
Son, Y.-W., Cohen, M.L., Louie, S.G., Phys. Rev. Lett. 97, 216803 (2006).CrossRefGoogle Scholar
Brey, L., Fertig, H.A., Phys. Rev. B 23, 235411 (2006).CrossRefGoogle Scholar
Han, M.Y., Brant, J.C., Kim, P., Phys. Rev. Lett. 104, 056801 (2010).CrossRefGoogle Scholar
Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C.N., de Heer, W.A., Conrad, E.H., Haddon, R.C., Nano Lett. 10, 4061 (2010).CrossRefGoogle Scholar
Balog, R., Jörgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lægsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T.G., Hofmann, P., Hornekær, L., Nat. Mater. 9, 315 (2010).CrossRefGoogle Scholar
Li, X., Wang, X., Zhang, L., Lee, S., Dai, H., Science 319, 1229 (2008).CrossRefGoogle Scholar
Yang, Y., Murali, R., IEEE Electron Device Lett. 31, 237 (2010).CrossRefGoogle Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., Nature 458, 877 (2009).CrossRefGoogle Scholar
Jiao, L., Wang, X., Diankov, G., Wang, H., Dai, H., Nat. Nanotechnol. 5, 321 (2010).CrossRefGoogle Scholar
de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E.H., Proc. Natl. Acad. Sci. U.S.A. 108, 16900 (2011).CrossRefGoogle Scholar
Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W.A., Nat. Nanotechnol. 5, 727 (2010).CrossRefGoogle Scholar
Speck, F., Ostler, M., Röhrl, J., Jobst, J., Waldmann, D., Hundhausen, M., Ley, L., Weber, H.B., Seyller, Th., Mater. Sci. Forum 645648, 629 (2010).CrossRefGoogle Scholar
Kubler, L., Aït-Mansour, K., Diani, M., Dentel, D., Bischoff, J.-L., Derivaz, M., Phys. Rev. B 72, 115319 (2005).CrossRefGoogle Scholar
Aït-Mansour, K., Dentel, D., Kubler, L., Diani, M., Derivaz, M., Bischoff, J.L., J. Phys. D: Appl. Phys. 40, 6225(2007).CrossRefGoogle Scholar
Emtsev, K.V., Zakharov, A.A., Coletti, C., Forti, S., Starke, U., Phys. Rev. B 84, 125423 (2011).CrossRefGoogle Scholar
Xia, C., Watcharinyanon, S., Zakharov, A.A., Yakimova, R., Hultman, L., Johansson, L.I., Virojanadara, C., Phys. Rev. B 85, 045418 (2012).CrossRefGoogle Scholar
Miura, Y., Kasai, H., Dino, W.A., Nakanishi, H., Sugimoto, T., J. Phys. Soc. Jpn. 72, 995 (2003).CrossRefGoogle Scholar