Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T20:02:04.591Z Has data issue: false hasContentIssue false

Fullerene-like Carbon Nitride: A Resilient Coating Material

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Carbon nitride is an emerging material for wear-resistant coatings. The fullerene-like CNx compounds generally exhibit extreme elasticity in combination with a low work of indentation hardness. Yet CNx shows a low-to-moderate resistance to penetration, depending on deposition conditions. Since the deformation energy is predominantly stored elastically, the material possesses an extremely resilient character. This new class of materials consists of sp2-coordinated basal planes that are buckled from the incorporation of pentagons and cross-linked at sp3-hybridized C sites, both of which are caused by structural incorporation of nitrogen. Carbon nitride thus deforms elastically due to bending of the structural units. The orientation, radius of curvature of the basal planes, and the degree of cross-linking between them defines the structure and properties of the material. Due to the unique deformation behavior, the hardness requires special care to assess, but can be very high for films with a large degree of cross-linking. This article is a review of the research on CNx films depositedby reactive magnetron sputtering, with examples from our recent work. The findings are significant for the design of fracture-tough materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cuomo, J.J., Leary, P.A., Yu, D., Reuter, W., and Frish, M., J. Vac. Sci. Technol. 16 (1979) p. 299.CrossRefGoogle Scholar
2.Chen, M.Y., Lin, X., Dravid, V.P., Chung, Y.W., Wong, V.W., and Sproul, W.D., Surf. Coat. Technol. 54–55 (1992) p. 360.CrossRefGoogle Scholar
3.Li, D., Lopez, S., Chung, Y.-W., Wong, M.S., and Sproul, W.D., J. Vac. Sci. Technol., A 13 (1995) p. 1063.Google Scholar
4.Liu, A.Y and Cohen, M.L., Phys. Rev. B 41 (1990) p. 10727; in fact,CrossRefGoogle Scholar
Sung, C.-M. at the Diamond Technology Center of Norton Co., Salt Lake City, claims to have been the first to suggest, in an unpublished patent disclosure in 1984, the existence of superhard βC3N4. He contacted M.L. Cohen at UC—Berkeley, who initiated the research on theoretical investigations of such compounds;Google Scholar
Sung, C. and Sung, M., Mater. Chem. Phys. 43 (1996) p. 1.CrossRefGoogle Scholar
5.Sjöström, H., Stafström, S., Boman, M., and Sundgren, J.-E., Phys. Rev. Lett. 75 (1995) p. 1136.Google Scholar
6.Hellgren, N., Johansson, M.P., Broitman, E., Hultman, L., and Sundgren, J.-E., Phys. Rev. B 59 (1999) p. 5162.CrossRefGoogle Scholar
7.Hultman, L., Stafström, S., Czigány, Zs., Hellgren, N., Brunell, I., Neidhardt, J., Suenaga, K., and Colliex, C., Phys. Rev. Lett. 87 225503–1 (2001).CrossRefGoogle Scholar
8.Cahn, R.W., The Coming of Materials Science (Pergamon Press, Amsterdam, 2001) p. 379.Google Scholar
9.Badzian, A., Badzian, T., Drawl, W.D., and Ray, R., Diamond Relat. Mater. 7 (1998) p. 1519.CrossRefGoogle Scholar
10.DeVries, R.C., Mater. Res. Innov. 1 (1997) p. 161.Google Scholar
11.Teter, D.M., MRS Bull. 23 (1) (1998) p. 22.CrossRefGoogle Scholar
12.Gilman, J.J., MRS Bull. 23 (8) (1998) p. 7.Google Scholar
13.Wang, E.G., Prog. Mater. Sci. 41 (1997) p. 241.CrossRefGoogle Scholar
14.Muhl, S. and Méndez, J.M., Diamond Relat. Mater. 8 (1999) p. 1809.Google Scholar
15.Amaratunga, G.A.J. and Chhowalla, M., Nature 383 (1996) p. 321.CrossRefGoogle Scholar
16.Alexandrou, I., Scheibe, H.-J., Kiely, H.-J., Papworth, C.J., Amaratunga, G.A.J., and Schultrich, B., Phys. Rev. B 60 (1999) p. 10903.CrossRefGoogle Scholar
17.Scheibe, H.-J., IEEE Trans. Plasma Sci. 25 (1997) p. 685.CrossRefGoogle Scholar
18.Johansson, M., Sjöström, H., and Hultman, L., Vacuum 53 (1999) p. 451.CrossRefGoogle Scholar
19.Berlind, T., “Structure and Properties of Si-C-N and B-C-N Thin Films Prepared by Magnetron Sputtering,” Licentiate thesis no. 816, Linköping Studies in Science and Technology, 2000.Google Scholar
20.Strout, D.L., J. Phys. Chem. A 104 (2000) p. 3364.CrossRefGoogle Scholar
21.Chhowalla, M. and Amaratunga, G.A.J., Nature 407 (2000) p. 164.CrossRefGoogle Scholar
22.Avivi, S., Mastai, Y., and Gedanken, A.J., Am. Chem. Soc. 122 (18) (2000) p. 4331.CrossRefGoogle Scholar
23.Seifert, G., Terrones, H., Terrones, M., and Frauenheim, T., Solid State Commun. 115 (12) (2000) p. 635.CrossRefGoogle Scholar
24.Rothschild, A., Sloan, J., and Tenne, R., J. Am. Chem. Soc. 122 (21) (2000) p. 5169.CrossRefGoogle Scholar
25.Hellgren, N., Macák, K., Broitman, E., Johansson, M.P., Hultman, L., and Sundgren, J.-E., J. Appl. Phys. 88 (2000) p. 524.CrossRefGoogle Scholar
26.Neidhardt, J., Czigány, Zs., Brunell, I.F., and Hultman, L. (unpublished manuscript).Google Scholar
27.Zheng, W.T., Broitman, E., Hellgren, N., Xing, K.Z., Ivanov, I., Sjöström, H., Hultman, L., and Sundgren, J.-E., Thin Solid Films 308–309 (1997) p. 223.Google Scholar
28.Hellgren, N., Johansson, M.P., Hjörvarsson, B., Broitman, E., Östblom, M., Liedberg, B., Hultman, L., and Sundgren, J.-E., J. Vac. Sci. Technol., A 18 (2000) p. 2349.Google Scholar
29.Stafström, S., Appl. Phys. Lett. 77 (2000) p. 3941.CrossRefGoogle Scholar
30.Brown, C.M., Beer, E., Bellavia, C., Cristofolini, L., González, R., Hanfland, M., Häusermann, D., Keshavarz-K, M., Kordatos, K., Prassides, K., and Wudl, F., J. Am. Chem. Soc. 118 (1996) p. 8715.Google Scholar
31.Kaltofen, R., Sebald, T., and Weise, G., Thin Solid Films 290 (1996) p. 112.CrossRefGoogle Scholar
32.Todorov, S.S., Marton, D., Boyd, K.J., Al-Bayati, A.H., and Rabalais, J.W., J. Vac. Sci. Technol., A 12 (1994) p. 3192.Google Scholar
33.Hammer, P. and Gissler, W., Diamond Relat. Mater. 5 (1996) p. 1152.CrossRefGoogle Scholar
34.Hofsäss, H., Ronning, C., Feldermann, H., and Sebastian, M., in Materials Modification and Synthesis by Ion-Beam Processing, edited by Alexander, D.E., Cheung, N.W., Park, B., and Skorupa, W. (Mater. Res. Soc. Symp. Proc. 438, Warrendale, PA, 1997) p. 575.Google Scholar
35.Spaeth, C., Kreissig, V., and Richter, F., Thin Solid Films 355–356 (1999) p. 64.CrossRefGoogle Scholar
36.Hellgren, N., Johansson, M.P., Broitman, E., Sandström, P., Hultman, L., and Sundgren, J.-E., Thin Solid Films 382 (2001) p. 146.CrossRefGoogle Scholar
37.Voevodin, A.A., Jones, J.G., Zabinski, J.S., and Hultman, L., J. Appl. Phys. 92 (2002) p. 724.Google Scholar
38.Neidhardt, J., Abendroth, B., Gago, R., Möller, W., and Hultman, L., “Diagnostics of an N2/Ar dc Magnetron Discharge for Reactive Sputter Deposition of Fullerene-like Carbon Nitride (CNx) Thin Films” (unpublished manuscript).Google Scholar
39.Czigány, Zs., Neidhardt, J., Brunell, I.F., and Hultman, L., Ultramicroscopy 94 (2003) p. 163.Google Scholar
40.Czigány, Zs., Neidhardt, J., Brunell, I., and Hultman, L., Appl. Phys. Lett. 79 (2001) p. 2639.CrossRefGoogle Scholar
41.Radnóczi, G., Sáfrán, G., Kovács, I., Geszti, O., and Bíró, L.P., in Proc. EUREM 12, edited by Frank, L. and Campor, F. (Czechoslovak Society for Electron Microscopy, Brno, Czech Republic, 2000) p. 243.Google Scholar
42.Ronning, C., Feldermann, H., Merk, R., Hofsäss, H., Reinke, P., and Thiele, J.-U., Phys. Rev. B 58 (1998) p. 2207.CrossRefGoogle Scholar
43.Hellgren, N., Lin, N., Broitman, E., Serin, V., Grillo, S.E., Twesten, R., Petrov, I., Colliex, C., Hultman, L., and Sundgren, J.-E., J. Mater. Res. 16 (2001) p. 3188.CrossRefGoogle Scholar
44.Hellgren, N., Johansson, M.P., Sundgren, J.-E., and Hultman, L., Appl. Phys. Lett. 78 (2001) p. 2703.CrossRefGoogle Scholar
45.Hellgren, N., Guo, J.-H., Såthe, C., Agui, A., Nordgren, J., Luo, Y., ågren, H., and Sundgren, J.-E., Appl. Phys. Lett. 79 (2001) p. 4348.Google Scholar
46.Hellgren, N. et al. (unpublished manuscript).Google Scholar
47.Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers—The Scienta ESCA300 Database (John Wiley & Sons, Chichester, 1992).Google Scholar
48.Dong, L., Yip-Wah, C., Shengtian, Y., Ming-Show, W., Adibi, F., and Sproul, W.D., J. Vac. Sci. Technol., A 12 (1994) p. 1470.Google Scholar
49.Lamanna, J., Braddock-Wilking, J., Lin, S.H., and Feldman, B.J., Solid State Commun. 109 (1999) p. 573.CrossRefGoogle Scholar
50.Lin, S.H., Braddock-Wilking, J., and Feldman, B.J., Solid State Commun. 114 (2000) p. 193.CrossRefGoogle Scholar
51.Sanchez, J.C., Donnet, C., Lefebvre, F., Fernández-Ramos, C., and Fernández, A., J. Appl. Phys. 90 (2001) p. 675.Google Scholar
52.Gammon, W.J., Malyarenko, D.I., Kraft, O., Hoatson, G.L., Reilly, A.C., and Holloway, B.C., Phys. Rev. B. 66 153402 (2002).CrossRefGoogle Scholar
53.Lin, N., Hellgren, N., Johansson, M.P., Hultman, L., Erlandsson, R., and Sundgren, J.-E., Phys. Rev. B 61 (2000) p. 4898.CrossRefGoogle Scholar
54.Stafström, S., Hultman, L., and Hellgren, N., Chem. Phys. Lett. 340 (2001) p. 227.CrossRefGoogle Scholar
55.Glenis, S., Cooke, S., Chen, X., and Labes, M.N., Chem. Mater. 6 (1994) p. 1850.Google Scholar
56.Oliver, W.C. and Pharr, G.N., J. Mater. Res. 7 (1992) p. 1564.CrossRefGoogle Scholar
57.Neidhardt, J., Czigány, Zs., Brunell, I.F., and Hultman, L., J. Appl. Phys. (2003) in press.Google Scholar
58.Arce Garcia, I., Berasategui, E.R., Bull, S.J., Page, T.F., Hellgren, N., Neidhardt, J., and Hultman, L., Philos. Mag. A 82 (2002) p. 2133.CrossRefGoogle Scholar
59.Robertson, J., Diamond-like Films and Coatings, edited by Clausing, R.E., Horton, L.L., Angus, J.C., and Koidl, P. (Plenum Press, New York, 1991) p. 331.Google Scholar
60.Lifshitz, Y., Diamond Relat. Mater. 8 (1999) p. 1659.CrossRefGoogle Scholar
61.Hellgren, N., “Sputtered Carbon Nitride Thin Films,” Dissertation no. 604, Linköping Studies in Science and Technology, 1999.Google Scholar
62.Molina-Aldareguia, J., Alexandrou, I., Amaratunga, G., Neidhardt, J., and Hultman, L. (unpublished manuscript).Google Scholar
63.Beardmore, K., Smith, R., and Webb, R.P., Modell. Simul. Mater. Sci. Eng. 2 (1994) p. 313.Google Scholar
64.Veerasamy, V.S., Yuan, J., Amaratunga, G.A.J., Milne, W.I., Gilkes, K.W.R., Weiler, M., and Brown, L.M., Phys. Rev. B 48 (1993) p. 17954.CrossRefGoogle Scholar
65.Davis, C.A., McKenzie, D.R., Yin, Y., Kravtchinskia, E., Amaratunga, G.A., and Veerasamy, V.S., Philos. Mag. B 69 (1994) p. 1133.CrossRefGoogle Scholar
66.Bulir, J., Jelinek, M., Vorlicek, V., Zemek, J., and Perina, V., Thin Solid Films 292 (1997) p. 318.CrossRefGoogle Scholar
67.Brunell, I.F., Picon, L., Hellgren, N., Czigány, Zs., Neidhardt, J., and Hultman, L. (unpublished manuscript).Google Scholar
68.Broitman, E., Zheng, W.T., Sjöström, H., Ivanov, I., Greene, J.E., and Sundgren, J.-E., Appl. Phys. Lett. 72 (1998) p. 2532.CrossRefGoogle Scholar
69.Lacerda, R.G., Hammer, P., Freire, F.L. Jr, Alvarez, F., and Marques, F.C., Diamond Relat. Mater. 9 (2000) p. 796.Google Scholar
70.Karlsson, L., Hultman, L., and Sundgren, J.-E., Thin Solid Films 371 (2000) p. 167.CrossRefGoogle Scholar
71.Broitman, E., Hellgren, N., Wännstrand, O., Johansson, M.P., Berlind, T., Sjöström, H., Sundgren, J.-E., Larsson, M., and Hultman, L., Wear 248 (2001) p. 55.CrossRefGoogle Scholar
72.Broitman, E., Macdonald, W., Hellgren, N., Radnózci, G., Czigány, Zs., Wennerberg, A., Jacobsson, M., and Hultman, L., Diamond Relat. Mater. 9 (2000) p. 1984.CrossRefGoogle Scholar
73.Broitman, E., Neidhardt, J., Singer, E., and Hultman, L. (unpublished manuscript).Google Scholar
74.Voevodin, A.A., Jones, J.G., Zabinski, J.S., Czigány, Zs., and Hultman, L., J. Appl. Phys. 92 (2002) p. 4980.Google Scholar
75.Grillo, S.E., Hellgren, N., Serin, V., Broitman, E., Colliex, C., Hultman, L., and Kihn, Y., Eur. Phys. J. Appl. Phys. 13 (2001) p. 97.Google Scholar
76.Fernández-Ramos, C., Sayagués, M.J., Rojas, T.C., Alcalá, M.D., Real, C., and Fernández, A., Diamond. Relat. Mater. 9 (2000) p. 212.CrossRefGoogle Scholar
77.Cutiongco, E.C., Li, D., Chung, Y.-W., and Bhatia, C.S., in Proc. STLE/ASME Tribology Conf., edited by Sutor, P.A. (The American Society of Mechanical Engineers, Orlando, 1995);Google Scholar
Bhatia, C.S., Anders, S., Bobb, K., Hsiao, R., Bogy, D.B., and Brown, I.G., ASME J. Tribol. 120 (1998) p. 795.CrossRefGoogle Scholar
78.Berlind, T., Johansson, M.P., Hellgren, N., and Hultman, L., Surf. Coat. Technol. 141 (2001) p. 145.CrossRefGoogle Scholar
79.Schedin, E. and Gunnarsson, L., in Proc. Surfaces of Forming Tools Symp., edited by Bergström, J. and Ericsson, T. (Uddeholm Research Foundation, Sweden, 1997).Google Scholar
80.Broitman, E., Hellgren, N., Järrendahl, K., Johansson, M.P., Olafsson, S., Radnóczi, G., Sundgren, J.-E., and Hultman, L., J. Appl. Phys. 89 (2001) p. 1184.Google Scholar
81.Broitman, E., Hellgren, N., Neidhardt, J., Brunell, I., and Hultman, L., J. Electron Mater. 31 (2002) p. L11.Google Scholar
82.Teter, D.M. and Hemley, R.J., Science 271 (1996) p. 53.CrossRefGoogle Scholar
83.Liu, A.Y. and Wentzcovitch, R.M., Phys. Rev. B 50 (1994) p. 10362.Google Scholar
84.Shirley, D.A., Phys. Rev. B 5 (1972) p. 4709.Google Scholar