Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T16:56:32.896Z Has data issue: false hasContentIssue false

Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious

Published online by Cambridge University Press:  12 April 2017

Mainak Majumder
Affiliation:
Monash University, Australia; mainak.majumder@monash.edu
Alessandro Siria
Affiliation:
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, France; alessandro.siria@lps.ens.fr
Lydéric Bocquet
Affiliation:
École Normale Supérieure, France; lyderic.bocquet@ens.fr
Get access

Abstract

Carbon materials exist in a large number of allotropic forms and exhibit a wide range of physical and chemical properties. From the perspective of fluidics, particularly within the confines of the nanoscale afforded by one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene structures, many unique properties have been discovered. However, other questions, such as the link between electronic states and hydrodynamics and accurate model predictions of transport, remain unanswered. Theoretical studies, experiments in large-scale ensembles of CNTs and stacked graphene sheets, and precise measurements at the single-pore and single-molecule level have helped in our understanding. These activities have led to explosive growth in the field, now known as carbon nanofluidics. The ability to produce membranes and devices from fluid phases of graphene oxide, which retain these special properties in molecular-scale flow channels, promises realization of applications in the near term.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hummer, G., Rasaiah, J.C., Noworyta, J.P., Nature 414, 188 (2001).CrossRefGoogle Scholar
Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S., Phys. Rev. Lett. 89, 185901 (2002).CrossRefGoogle Scholar
Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G., Science 303, 62 (2004).CrossRefGoogle Scholar
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Bakajin, O., Science 312, 1034 (2006).CrossRefGoogle Scholar
Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005).CrossRefGoogle Scholar
Majumder, M., Chopra, N., Hinds, B.J., ACS Nano 5, 3867 (2011).CrossRefGoogle Scholar
Joseph, S., Aluru, N.R., Nano Lett. 8, 452 (2008).CrossRefGoogle Scholar
Thomas, J.A., McGaughey, A.J.H., Nano Lett. 8, 2788 (2008).CrossRefGoogle Scholar
Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L., Nano Lett. 10, 4067 (2010).CrossRefGoogle Scholar
Bocquet, L., Charlaix, E., Chem. Soc. Rev. 39, 1073 (2010).CrossRefGoogle Scholar
Lee, C.Y., Choi, W., Han, J.-H., Strano, M.S., Science 329, 1320 (2010).CrossRefGoogle Scholar
Ago, H., Kugler, T., Cacialli, F., Salanech, W.R., Shafer, M.S.P., Windle, A.H., Friend, R.H., J. Phys. Chem. B 103, 8116 (1999).CrossRefGoogle Scholar
Liu, H., He, J., Tang, J., Liu, H., Pang, P., Cao, D., Krstic, P., Lindsay, J.S., Nuckolls, C., Science 327, 64 (2010).CrossRefGoogle Scholar
Liu, L., Yang, C., Zhao, K., Li, J., Wu, H.-C., Nat. Commun. 4, 2989 (2013).CrossRefGoogle Scholar
Geng, J., Kim, K., Zhang, J., Escalada, A., Tunuguntla, R., Comolli, L.R., Allen, F.I., Shnyrova, A.V., Cho, K.R., Munoz, D., Wang, Y.M., Grigoropoulos, C.P., Ajo-Franklin, C.M., Frolov, V.A., Noy, A., Nature 514, 612 (2014).CrossRefGoogle Scholar
Siria, A., Poncharal, P., Biance, A.-L., Fulcrand, R., Blase, X., Purcell, S.T., Bocquet, L., Nature 494, 455 (2013).CrossRefGoogle Scholar
Secchi, E., Marbach, S., Niguès, A., Stein, D., Siria, A., Bocquet, L., Nature 537, 210 (2016).CrossRefGoogle Scholar
Secchi, E., Niguès, A., Jubin, L., Siria, A., Bocquet, L., Phys. Rev. Lett. 116, 154501 (2016).CrossRefGoogle Scholar
Guo, S., Buchsbaum, S.F., Meshot, E.R., Davenport, M.W., Siwy, Z., Fornasiero, F., Biophys. J. 108, 175a (2015).CrossRefGoogle Scholar
Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru, N.R., Kis, A., Radenovic, A., Nature 536, 197 (2016).CrossRefGoogle Scholar
Tocci, G., Joly, L., Michaelides, A., Nano Lett. 14, 6872 (2014).CrossRefGoogle Scholar
Grosjean, B., Pean, C., Siria, A., Bocquet, L., Vuilleumier, R., Bocquet, M.-L., J. Phys. Chem. Lett. 7, 4695 (2016).CrossRefGoogle Scholar
Werber, J.R., Deshmukh, A., Elimelech, M., Environ. Sci. Technol. Lett. 3, 112 (2016).CrossRefGoogle Scholar
O’Hern, S.C., Boutilier, M.S.H., Idrobo, J.C., Song, Y., Kong, J., Laoui, T., Atieh, M., Karnik, R., Nano Lett. 14, 1234 (2014).CrossRefGoogle Scholar
Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S., Mahurin, S.M., Nat. Nanotechnol. 10, 459 (2015).CrossRefGoogle Scholar
Hu, S., Lozada-Hidalgo, M., Wang, F.C., Mishchenko, A., Schedin, F., Nair, R.R., Hill, E.W., Boukhvalov, D.W., Katsnelson, M.I., Dryfe, R.A.W., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nature 516, 227 (2014).CrossRefGoogle Scholar
Celebi, K., Buchheim, J., Wyss, R.M., Droudian, A., Gasser, P., Shorubalko, I., Kye, J.L., Lee, C., Park, H.G., Science 344, 289 (2014).CrossRefGoogle Scholar
Radha, B., Esfandiar, A., Wang, F.C., Rooney, A.P., Gopinadhan, K., Keerthi, A., Mishchenko, A., Janardanan, A., Blake, P., Fumagalli, L., Lozada-Hidalgo, M., Garaj, S., Haigh, S.J., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nature 538, 222 (2016).CrossRefGoogle Scholar
Gravelle, S., Ybert, C., Bocquet, L., Joly, L., Phys. Rev. E 93, 033123 (2016).CrossRefGoogle Scholar
Raidongia, K., Huang, J., J. Am. Chem. Soc. 134, 16528 (2012).CrossRefGoogle Scholar
Kim, J.E., Han, T.H., Lee, S.H., Kim, J.Y., Ahn, C.W., Yun, J.M., Kim, S.O., Angew. Chem. Int. Ed. Engl. 50, 3043 (2011).CrossRefGoogle Scholar
Tkacz, R., Oldenbourg, R., Mehta, S.B., Miansari, M., Verma, A., Majumder, M., Chem. Commun. 50, 6668 (2014).CrossRefGoogle Scholar
Akbari, A., Sheath, P., Martin, S.T., Shinde, D.B., Shaibani, M., Chakraborty-Banerjee, P., Tkacz, R., Bhattacharyya, D., Majumder, M., Nat. Commun. 7, 10891 (2016).CrossRefGoogle Scholar
Xia, S., Ni, M., Zhu, T., Zhao, Y., Li, N., Desalination 371, 78 (2015).CrossRefGoogle Scholar
Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nair, R.R., Science 343, 752 (2014).CrossRefGoogle Scholar
Kim, H.W., Yoon, H.W., Yoon, S.-M., Yoo, B.M., Ahn, B.K., Cho, Y.H., Shin, H.J., Yang, H., Paik, U., Kwon, S., Choi, J.Y., Park, H.B., Science 342, 91 (2013).CrossRefGoogle Scholar
Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., Geim, A.K., Science 335, 442 (2012).CrossRefGoogle Scholar
Hu, M., Mi, B., Environ. Sci. Technol. 47, 3715 (2013).CrossRefGoogle Scholar
Amadei, C.A., Vecitis, C.D., J. Phys. Chem. Lett. 7, 3791 (2016).CrossRefGoogle Scholar
Yoshida, H., Bocquet, L., J. Chem. Phys. 144, 234701 (2016).CrossRefGoogle Scholar
Martin, S.T., Neild, A., Majumder, M., APL Mater. 2, 092803 (2014).CrossRefGoogle Scholar
Martin, S., Akbari, A., Chakraborty Banerjee, P., Neild, A., Majumder, M., Phys. Chem. Chem. Phys. 18, 32185 (2016).CrossRefGoogle Scholar
Gravelle, S., Yoshida, H., Joly, L., Ybert, C., Bocquet, L., J. Chem. Phys. 145, 124708 (2016).CrossRefGoogle Scholar
Huang, K., Liu, G., Lou, Y., Dong, Z., Shen, J., Jin, W., Angew. Chem. Int. Ed. 53, 6929 (2014).CrossRefGoogle Scholar
Shaibani, M., Akbari, A., Sheath, P., Easton, C.D., Chakraborty Banerjee, P., Konstas, K., Fakhfouri, A., Barghamadi, M., Musameh, M.M., Best, A.S., Rüther, T., Mahon, P.J., Hill, M.R., Hollenkamp, A.F., Majumder, M., ACS Nano 10, 7768 (2016).CrossRefGoogle Scholar