Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:18:44.375Z Has data issue: false hasContentIssue false

Flexible and stretchable sensors for fluidic elastomer actuated soft robots

Published online by Cambridge University Press:  02 February 2017

Shuo Li
Affiliation:
Department of Materials Science and Engineering, Cornell University, USA; sl2699@cornell.edu
Huichan Zhao
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA; hz282@cornell.edu
Robert F. Shepherd
Affiliation:
Department of Materials Science and Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA; rfs247@cornell.edu
Get access

Abstract

Compliant robots, a class of so-called soft robots, made from elastomeric materials, require flexible or stretchable sensors for functional sophistication beyond that of open-loop controls and actuations. These robots have expanded the scope of research in robotics from fast, strong, and precise industrial manufacturing toward new needs of adaptation and safety—the realm of human–robot interactions (HRIs). HRIs include circumstances ranging from existing tasks such as vacuum cleaning to the far-reaching goal of direct contact with the heart for ventricular assist devices, and wearable robots as an intermediate task for force-augmenting exoskeletons. Toward these goals, many efforts are being made to impart sensation for feedback control via flexible or stretchable sensors that can be integrated with the soft bodies of these robots without hindering their motion or reducing their safety. This article briefly reviews the key techniques and tradeoffs for designing and fabricating these sensors. We describe the sensors that our research group uses for fluidically powered soft robots. We conclude with some perspectives about future directions of sensing integration for improved autonomy and interaction with humans in close proximity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M., Angew. Chem. Int. Ed. 50, 1890 (2011).CrossRefGoogle Scholar
Lin, H.-T., Leisk, G.G., Trimmer, B., Bioinspir. Biomim. 6, 26007 (2011).CrossRefGoogle Scholar
Chan, V., Park, K., Collens, M.B., Kong, H., Saif, T.A., Bashir, R., Sci. Rep. 2, 857 (2012).CrossRefGoogle Scholar
Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., Calius, E.P., J. Appl. Phys. 112, 041101 (2012).CrossRefGoogle Scholar
Liang, X., Boppart, S.A., IEEE Trans. Biomed. Eng. 57, 953 (2010).CrossRefGoogle Scholar
Saunders, F., Golden, E., White, R.D., Rife, J., Robotica 29, 823 (2011).CrossRefGoogle Scholar
Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J., Robot. Auton. Syst. 73, 135 (2015).CrossRefGoogle Scholar
Rus, D., Tolley, M.T., Nature 521, 467 (2015).CrossRefGoogle Scholar
Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M., Proc. Natl. Acad. Sci. U.S.A. 108, 20400 (2011).CrossRefGoogle Scholar
Martinez, R.V., Branch, J.L., Fish, C.R., Jin, L., Shepherd, R.F., Nunes, R.M.D., Suo, Z., Whitesides, G.M., Adv. Mater. 25, 205 (2013).CrossRefGoogle Scholar
Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M., Adv. Funct. Mater. 24, 2163 (2014).CrossRefGoogle Scholar
Wehner, M., Tolley, M.T., Menguc, Y., Park, Y.-L., Mozeika, A., Ding, Y., Onal, C., Shepherd, R.F., Whitesides, G.M., Wood, R.J., Soft Robot. 1, 263 (2014).CrossRefGoogle Scholar
Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., Whitesides, G.M., Soft Robot. 1, 213 (2014).CrossRefGoogle Scholar
Marchese, A.D., Onal, C.D., Rus, D., in Experimental Robotics: 13th International Symposium on Experimental Robotics, Desai, J.P., Dudek, G., Khatib, O., Kumar, V., Eds. (Springer, Heidelberg, Germany, 2013), vol. 88, pp. 4154.CrossRefGoogle Scholar
Shepherd, R.F., Stokes, A.A., Freake, J., Barber, J., Snyder, P.W., Mazzeo, A.D., Cademartiri, L., Morin, S.A., Whitesides, G.M., Angew. Chem. Int. Ed. 52, 2892 (2013).CrossRefGoogle Scholar
Marchese, A.D., Onal, C.D., Rus, D., Soft Robot. 1, 75 (2014).CrossRefGoogle Scholar
Katzschmann, R.K., Marchese, A.D., Rus, D., in Experimental Robotics: 14th International Symposium on Experimental Robotics, Hsieh, M.A., Khatib, O., Kumar, V. Eds. (Springer, Heidelberg, Germany, 2016), vol. 109, pp. 405420.CrossRefGoogle Scholar
Mac Murray, B.C., An, X., Robinson, S.S., Van Meerbeek, I.M., O’Brien, K.W., Zhao, H., Shepherd, R.F., Adv. Mater. 27, 6334 (2015).CrossRefGoogle Scholar
Argiolas, A., Mac Murray, B.C., Van Meerbeek, I., Whitehead, J., Sinibaldi, E., Mazzolai, B., Shepherd, R.F., Soft Robot. 3, 101 (2016).CrossRefGoogle Scholar
Van Meerbeek, I.M., Mac Murray, B.C., Kim, J.W., Robinson, S.S., Zou, P.X., Silberstein, M.N., Shepherd, R.F., Adv. Mater. 28, 2801 (2016).CrossRefGoogle Scholar
Bicchi, A., Tonietti, G., IEEE Robot. Autom. Mag. 11, 22 (2004).CrossRefGoogle Scholar
Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M., Proc. Natl. Acad. Sci. U.S.A. 107, 18809 (2010).CrossRefGoogle Scholar
Bekey, G.A., Autonomous Robots: From Biological Inspiration to Implementation and Control (MIT Press, Cambridge, MA, 2005), pp. 125.Google Scholar
Lu, N., Kim, D.-H., Soft Robot. 1, 53 (2014).CrossRefGoogle Scholar
Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R., Adv. Mater. 26, 149 (2014).CrossRefGoogle Scholar
Park, Y.L., Chen, B.R., Wood, R.J., IEEE Sens. J. 12, 2711 (2012).CrossRefGoogle Scholar
Hammond, F.L., Menguc, Y., Wood, R.J., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2014) pp. 40004007.Google Scholar
Yeo, J.C., Yap, H.K., Xi, W., Wang, Z., Yeow, C.-H., Lim, C.T., Adv. Mater. Technol. 1, 1600018 (2016).CrossRefGoogle Scholar
Muth, J.T., Vogt, D.M., Truby, R.L., Menguc, Y., Kolesky, D.B., Wood, R.J., Lewis, J.A., Adv. Mater. 26, 6307 (2014).CrossRefGoogle Scholar
Majidi, C., Kramer, R., Wood, R.J., Smart Mater. Struct. 20, 105017 (2011).CrossRefGoogle Scholar
Vogt, D.M., Park, Y.-L., Wood, R.J., IEEE Sens. J. 13, 4056 (2013).CrossRefGoogle Scholar
Menguc, Y., Park, Y.-L., Pei, H., Vogt, D., Aubin, P.M., Winchell, E., Fluke, L., Stirling, L., Wood, R.J., Walsh, C.J., Int. J. Robot. Res. 33, 1748 (2014).CrossRefGoogle Scholar
Menguc, Y., Park, Y.-L., Martinez-Villalpando, E., Aubin, P., Zisook, M., Stirling, L., Wood, R.J., Walsh, C.J., Proc. IEEE Int. Conf. Robotics Automation (2013), pp. 52895296.Google Scholar
Lee, C., Jug, L., Meng, E., Appl. Phys. Lett. 102, 183511 (2013).CrossRefGoogle Scholar
Xu, F., Zhu, Y., Adv. Mater. 24, 5117 (2012).CrossRefGoogle Scholar
Manandhar, P., Calvert, P.D., Buck, J.R., IEEE Sens. J. 12, 2052 (2012).CrossRefGoogle Scholar
Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Dauskardt, R., Bao, Z., Nat. Commun. 5, 3002 (2014).CrossRefGoogle Scholar
Lu, N., Lu, C., Yang, S., Rogers, J., Adv. Funct. Mater. 22, 4044 (2012).CrossRefGoogle Scholar
Lipomi, D.J., Vosgueritchian, M., Tee, B.C-K., Hellstrom, S.L., Lee, J.A., Fox, C.H., Bao, Z., Nat. Nanotechnol. 6, 788 (2011).CrossRefGoogle Scholar
Frutiger, A., Muth, J.T., Vogt, D.M., Menguc, Y., Campo, A., Valentine, A.D., Walsh, C.J., Lewis, J.A., Adv. Mater. 27, 2440 (2015).CrossRefGoogle Scholar
Yao, S., Zhu, Y., Nanoscale 6, 2345 (2014).CrossRefGoogle Scholar
Hu, W., Niu, X., Zhao, R., Pei, Q., Appl. Phys. Lett. 102, 83303 (2013).CrossRefGoogle Scholar
Viry, L., Levi, A., Massimo, M., Mondini, A., Mattoli, V., Mazzolai, B., Beccai, L., Adv. Mater. 26, 2659 (2014).CrossRefGoogle Scholar
Roberts, P., Damian, D.D., Shan, W., Lu, T., Majidi, C., Proc. IEEE Int. Conf. Robotics Automation (2013) pp. 35293534.Google Scholar
Lucarotti, C., Totaro, M., Sadeghi, A., Mazzolai, B., Beccai, L., Sci. Rep. 5, 8788 (2015).CrossRefGoogle Scholar
Puangmali, P., Althoefer, K., Seneviratne, L.D., Murphy, D., Dasgupta, P., IEEE Sens. J. 8, 371 (2008).CrossRefGoogle Scholar
Robinson, S.S., O’Brien, K.W., Zhao, H., Peele, B.N., Larson, C.M., Mac Murray, B.C., Van Meerbeek, I.M., Dunham, S.N., Shepherd, R.F., Extreme Mech. Lett. 5, 47 (2015).CrossRefGoogle Scholar
Larson, C., Peele, B., Li, S., Robinson, S., Totaro, M., Beccai, L., Mazzolai, B., Shepherd, R., Science 351, 1071 (2016).CrossRefGoogle Scholar
Li, S., Peele, B.N., Larson, C.M., Zhao, H., Shepherd, R.F., Adv. Mater. 28, 9770 (2016).CrossRefGoogle ScholarPubMed
Ramsden, E., Hall Effect Sensors, Theory and Application, 2nd ed. (Newnes, Burlington, MA, 2006), pp. 19.Google Scholar
Ozel, S., Keskin, N.A., Khea, D., Onal, C.D., Sens. Actuators A Phys. 236, 349 (2015).CrossRefGoogle Scholar
Ozel, S., Skorina, E.H., Luo, M., Tao, W., Chen, F., Pan, Y., Onal, C.D., “A Composite Soft Bending Actuation Module with Integrated Curvature Sensing,” presented at the 32nd IEEE International Conference on Robotics and Automation, Stockholm, Sweden, May 16–21, 2016.CrossRefGoogle Scholar
Jentoft, L., Howe, R., “Compliant Fingers Make Simple Sensors Smart,” Proc. 2010 IFToMM/ASME Workshop Underactuated Grasping (UG2010) (Montreal, Canada, 2010).Google Scholar
Luo, M., Pan, Y., Skorina, E.H., Tao, W., Chen, F., Ozel, S., Onal, C.D., Bioinspir. Biomim. 10, 55001 (2015).CrossRefGoogle Scholar
Ryu, S.C., Quek, Z.F., Renaud, P., Black, R.J., Daniel, B.L., Cutkosky, M.R., Proc. IEEE Int. Conf. Robotics Automation (2012), pp. 15891594.Google Scholar
Cianchetti, M., Renda, F., Licofonte, A., Laschi, C., “Sensorization of Continuum Soft Robots for Reconstructing Their Spatial Configuration,” presented at the IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, June 24–27, 2012.CrossRefGoogle Scholar
Dobrzynski, M.K., Halasz, I., Pericet-Camara, R., Floreano, D., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2012), pp. 48104815.Google Scholar
Yi, J., Zhu, X., Shen, L., Sun, B., Jiang, L., in Life System Modeling and Intelligent Computing, Springer Series in Communications in Computer and Information Science, Li, K., Li, X., Ma, S., Irwin, G., Eds. (Springer, Berlin, Germany, 2010), vol. 97, pp. 2531.CrossRefGoogle Scholar
Polygerinos, P., Ataollahi, A., Schaeffter, T., Razavi, R., Seneviratne, L.D., Althoefer, K., IEEE Trans. Biomed. Eng. 58, 721 (2011).CrossRefGoogle Scholar
Jentoft, L.P., Dollar, A.M., Wagner, C.R., Howe, R.D., Sensors 14, 3861 (2014).CrossRefGoogle ScholarPubMed
Jiang, L., Low, K., Costa, J.M., Black, R.J., Park, Y.-L., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2015), pp. 17631768.Google Scholar
Righini, G.C., Tajani, A., Cutolo, A., in An Introduction to Optoelectronic Sensors, Righini, G.C., Tajani, A., Cutolo, A., Eds. (World Scientific, Singapore, 2009), pp. 133.CrossRefGoogle Scholar
Zhao, H., Huang, R., Shepherd, R.F., Proc. IEEE Int. Conf. Robotics Automation (2016), pp. 40084013.Google Scholar
Zhao, H., Jalving, J., Huang, R., Knepper, R., Ruina, A., Shepherd, R., IEEE Robot. Autom. Mag. 23, 55 (2016).CrossRefGoogle Scholar
Wehner, M., Quinlivan, B., Aubin, P.M., Martinez-Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R., Walsh, C., Proc. IEEE Int. Conf. Robotics Automation (2013), pp. 33623369.Google Scholar
Asbeck, A.T., Schmidt, K., Walsh, C.J., Robot. Auton. Syst. 73, 102 (2015).CrossRefGoogle Scholar
Park, E., Mehandru, N., Lievano Beltran, T., Kraus, E., Holland, D., Polygerinos, P., Vasilyev, N.V., Walsh, C.J., J. Med. Device 8, 20909 (2014).CrossRefGoogle Scholar
Zhao, H., O’Brien, K., Li, S., Shepherd, R.F., Sci. Robot. 1, eaai7529 (2016).CrossRefGoogle Scholar
Ramuz, M., Tee, B.C.-K., Tok, J.B.-H., Bao, Z., Adv. Mater. 24, 3223 (2012).CrossRefGoogle Scholar
To, C., Hellebrekers, T.L., Park, Y.-L., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2015), pp. 58985903.Google Scholar