Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:06:22.346Z Has data issue: false hasContentIssue false

Fighting cancer with nanoparticle medicines―The nanoscale matters

Published online by Cambridge University Press:  12 September 2012

Mark E. Davis*
Affiliation:
California Institute of Technology; mdavis@cheme.caltech.edu
Get access

Abstract

Papyrus writings from 1600–1500 BC describe cancer and the attempts at treatment. Centuries later, cancer remains a devastating disease. Given the long history of difficulties in developing cancer therapies, why is there excitement about nanoparticle medicine (nanomedicines) for fighting cancer? This article describes the current understanding of why these engineered, nano-sized medicines, which are highly multifunctional chemical systems, have the potential to provide revolutionary ways to treat cancer. This point is illustrated by physical insights at the nanoscale that allow for the development of nanoparticles that can function in both animals and humans. The human data show how we have translated two independent nanoparticle cancer therapeutics from laboratory curiosities to experimental therapeutics in human clinical trials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jemal, A., Siegel, R., Xu, J., Ward, E., CA-Cancer J. Clin. 60, 277 (2010).CrossRefGoogle Scholar
Data from the World Bank, www.worldbank.org.Google Scholar
O’Callaghan, T., Nature 471 (7339), S2 (2011).CrossRefGoogle Scholar
Dreher, M.R., Liu, W., Michelich, C.R., Dewhirst, M.W., Yuan, F., Chilkoti, A., J. Natl. Cancer Inst. 98 (5), 335 (2006).CrossRefGoogle Scholar
Davis, M.E., Mol. Pharmacol. 6 (3), 659 (2009).CrossRefGoogle Scholar
Lacenda, L., Herrero, M.A., Venner, K., Bianco, A., Prato, M., Kostarelos, K., Small 4 (8), 1130 (2008).CrossRefGoogle Scholar
Ruggiero, A., Villa, C.H., Bander, E., Rey, D.A., Bergkvist, M., Batt, C.A., Manova-Todorova, K., Deen, W.M., Scheinberg, D.A., McDevitt, M.R., PNAS 107 (27), 12369 (2010).CrossRefGoogle Scholar
Fitzpatrick, J.A.J., Andreko, S.K., Ernst, L.A., Waggoner, A.S., Ballou, B., Bruchez, M.P., Nano. Lett. 9 (7), 2736 (2009).CrossRefGoogle Scholar
Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., Terada, Y., Kano, M.R., Miyazono, K., Uesaka, M., Nishiyama, N., Kataoka, K., Nat. Nanotechnol. 6, 815 (2011).CrossRefGoogle Scholar
Popielarski, S.R., Hu-Lieskovan, S., French, S.W., Triche, T.J., Davis, M.E., Bioconjugate Chem. 16 (5), 1071 (2005).CrossRefGoogle Scholar
Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C.W., Nat. Nanotechnol. 3 (3), 145 (2008).CrossRefGoogle Scholar
Mishra, S., Webster, P., Davis, M.E., Eur. J. Cell Biol. 83, 1 (2004).CrossRefGoogle Scholar
Fire, A.Z., “Gene silencing by double stranded RNA” (Nobel Lecture, December 8, 2006), p. 224; www.nobelprize.org/nobel_prizes/medicine/laureates/2006/fire_lecture.pdf.Google Scholar
Davis, M.E., Zuckerman, J.E., Choi, C.H.J., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., Ribas, A., Nature 464, 1067 (2010).CrossRefGoogle Scholar