Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T19:59:36.881Z Has data issue: false hasContentIssue false

Fabrication of Device Nanostructures Using Supercritical Fluids

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Supercritical fluids including carbon dioxide offer a combination of properties that are uniquely suited for device fabrication at the nanoscale. Liquid-like densities, favorable transport properties, and the absence of surface tension enable solution-based processing in an environment that behaves much like a gas. These characteristics provide a means for extending “top-down” processing methods including metal deposition, cleaning, etching, and surface modification chemistries to the smallest device features. The interaction of carbon dioxide with polymeric materials also enables complete structural specification of nanostructured metal oxide films using a “bottom-up” approach in which deposition reactions are conducted within sacrificial, pre-organized templates dilated by the fluid. The result is high-fidelity replication of the template structure in a new material. In particular, block copolymer templates yield well-ordered porous silica and titania films containing spherical or vertically aligned pores that can serve as device substrates for applications in microelectronics, detection arrays, and energy conversion. Finally, the synthesis of nanoparticles and nanowires in supercritical fluids is developing rapidly and offers promise for the efficient production of well-defined materials. In this review, we summarize these developments and discuss their potential for nextgeneration device fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.P.J., Linstrom and W.G., Mallard, eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg, Md., June 2005); Web site http://webbook.nist.gov (accessed September 2005).Google Scholar
2.Zong, Y.F., PhD thesis, University of Massachusetts (2005).Google Scholar
3.Vogt, B.D., PhD thesis, University of Massachusetts (2003).Google Scholar
4.Gupta, R.R., RamachandraRao, V.S., and Watkins, J.J., Macromolecules 36 (2003) p. 1295.CrossRefGoogle Scholar
5. International Technology Roadmap for Semiconductors (ITRS), 2003 Edition, http://public.itrs.net/Files/2003ITRS/Home2003.htm (accessed September 2005).Google Scholar
6. International Technology Roadmap for Semiconductors (ITRS), 2004 Update, http://www.itrs.net/Common/2004Update/2004Update.htm (accessed September 2005).Google Scholar
7.Weibel, G.L. and Ober, C.K., Microelectron. Eng. 65 (2003) p. 145.CrossRefGoogle Scholar
8.O'Neil, A. and Watkins, J.J., Green Chem. 6 (2004) p. 363.CrossRefGoogle Scholar
9.Jones, C.A., Zweber, A., DeYoung, J.P., McClain, J.B., Carbonell, R., and DeSimone, J.M., Crit. Rev. Solid State Mater. Sci. 29 (2004) p. 97.CrossRefGoogle Scholar
10.Cansell, F., Aymonier, C., and Loppinet-Serani, A., Curr. Opin. Solid State Mater. Sci. 7 (2003) p. 331.CrossRefGoogle Scholar
11.Hansen, B.N., Hybertson, B.M., Barkley, R.M., and Sievers, R.E., Chem. Mater. 4 (1992) p. 749.CrossRefGoogle Scholar
12.Sievers, R.E. and Hansen, B.N., “Chemical Deposition Methods Using Supercritical Fluid Solutions,” U.S. Patent 4,970,093 (November 13, 1990).Google Scholar
13.Popov, V.K., Bagratashvili, V.N., Antonov, E.N., and Lemenovski, D.A., Thin Solid Films 279 (1996) p. 66.CrossRefGoogle Scholar
14.Blackburn, J.M., Long, D.P., Cabanas, A., and Watkins, J.J., Science 294 (2001) p. 141.CrossRefGoogle Scholar
15.Cabanas, A., Shan, X.Y., and Watkins, J.J., Chem. Mater. 15 (2003) p. 2910.CrossRefGoogle Scholar
16.Blackburn, J.M., Long, D.P., and Watkins, J.J., Chem. Mater. 12 (2000) p. 2625.CrossRefGoogle Scholar
17.Hunde, E.T. and Watkins, J.J., Chem. Mater. 16 (2004) p. 498.CrossRefGoogle Scholar
18.Long, D.P., Blackburn, J.M., and Watkins, J.J., Adv. Mater. 12 (2000) p. 913.3.0.CO;2-#>CrossRefGoogle Scholar
19.Watkins, J.J., Blackburn, J.M., and McCarthy, T.J., Chem. Mater. 11 (1999) p. 213.CrossRefGoogle Scholar
20.Cabanas, A., Long, D.P., and Watkins, J.J., Chem. Mater. 16 (2004) p. 2028.CrossRefGoogle Scholar
21.O'Neil, A. and Watkins, J.J., (2005) unpublished manuscript.Google Scholar
22.Kondoh, E., Jpn. J. Appl. Phys. Pt. 1: Regul. Pap. Short Notes Rev. Pap. 43 (2004) p. 3928.CrossRefGoogle Scholar
23.Zong, Y.F. and Watkins, J.J., Chem. Mater. 17 (2005) p. 560.CrossRefGoogle Scholar
24.Zong, Y.F., Shan, X.Y., and Watkins, J.J., Langmuir 20 (2004) p. 9210.CrossRefGoogle Scholar
25.Blackburn, J.M., Gaynor, J., Drewery, J., Hunde, E., and Watkins, J.J., Adv. Metallization Conf. Proc. (Warrendale, PA, 2003) p. 601.Google Scholar
26.Watkins, J.J., Blackburn, J.M., Long, D.P., and Lazorcik, J.L., “Chemical Fluid Deposition Method for the Formation of Metal and Metal Alloy Films on Patterned and Unpatterned Substrates,” U.S. Patent 6,689,700 (February 10, 2004).Google Scholar
27.Watkins, J.J. and McCarthy, T.J., “A Method of Chemically Depositing Material onto a Substrate,” U.S. Patent 5,789,027 (August 4, 1998).Google Scholar
28.Ohde, H., Kramer, S., Moore, S., and Wai, C.M., Chem. Mater. 16 (2004) p. 4028.CrossRefGoogle Scholar
29.Ye, X.R., Wai, C.M., Zhang, D.Q., Kranov, Y., McIlroy, D.N., Lin, Y.H., and Engelhard, M., Chem. Mater. 15 (2003) p. 83.CrossRefGoogle Scholar
30.Wakayama, H., Setoyama, N., and Fukushima, Y., Adv. Mater. 15 (2003) p. 742.CrossRefGoogle Scholar
31.Xie, B., Finstad, C.C., and Muscat, A.J., Chem. Mater. 17 (2005) p. 1753.CrossRefGoogle Scholar
32.Bessel, C.A., Denison, G.M., DeSimone, J.M., DeYoung, J., Gross, S., Schauer, C.K., and Visintin, P.M., J. Am. Chem. Soc. 125 (2003) p. 4980.CrossRefGoogle Scholar
33.Shan, X.Y. and Watkins, J.J., Thin Solid Films (2005) in press.Google Scholar
34.Cao, C.T., Fadeev, A.Y., and McCarthy, T.J., Langmuir 17 (2001) p. 757.CrossRefGoogle Scholar
35.Combes, J.R., White, L.D., and Tripp, C.P., Langmuir 15 (1999) p. 7870.CrossRefGoogle Scholar
36.Gorman, B.P., Orozco-Teran, R.A., Zhang, Z., Matz, P.D., Mueller, D.W., and Reidy, R.F., J. Vac. Sci. Technol. B 22 (2004) p. 1210.CrossRefGoogle Scholar
37.Xie, B. and Muscat, A.J., in Ultra-Clean Processing of Silicon Surfaces VII, Vol. 103104 (Trans Tech, Brussels, 2005) p. 323.Google Scholar
38.Xie, B. and Muscat, A.J., Microelectron. Eng. 76 (2004) p. 52.CrossRefGoogle Scholar
39.Cotte, J.M., Goldfarb, D.L., McCullough, K.J., Moreau, W.M., Pope, K.R., Simons, J.P., and Taft, C.J., “Process of Drying Semiconductor Wafers Using Liquid or Supercritical Carbon Dioxide,” U.S. Patent 6,398,875 (June 4, 2002).Google Scholar
40.Cotte, J.M., Goldfarb, D.L., McCullough, K.J., Moreau, W.M., Pope, K.R., Simons, J.P., and Taft, C.J., “Process of Cleaning Semiconductor Processing, Handling, and Manufacturing Equipment,” U.S. Patent 6,454,869 (September 24, 2002).Google Scholar
41.Goldfarb, D.L., de Pablo, J.J., Nealey, P.F., Simons, J.P., Moreau, W.M., and Angelopoulos, M., J. Vac. Sci. Technol. B 18 (2000) p. 3313.CrossRefGoogle Scholar
42.Namatsu, H., J. Photopolym. Sci. Technol. 15 (2002) p. 381.CrossRefGoogle Scholar
43.Namatsu, H., Jpn. J. Appl. Phys. Pt. 2: Lett. Express Lett. 43 (2004) p. L456.CrossRefGoogle Scholar
44.Namatsu, H., Yamazaki, K., and Kurihara, K., J. Vac. Sci. Technol. B 18 (2000) p. 780.CrossRefGoogle Scholar
45.Hoggan, E.N., Flowers, D., Wang, K., DeSimone, J.M., and Carbonell, R.G., Ind. Eng. Chem. Res. 43 (2004) p. 2113.CrossRefGoogle Scholar
46.Sundararajan, N., Yang, S., Ogino, K., Valiyaveettil, S., Wang, J.G., Zhou, X.Y., Ober, C.K., Obendorf, S.K., and Allen, R.D., Chem. Mater. 12 (2000) p. 41.CrossRefGoogle Scholar
47.Pham, V.Q., Ferris, R.J., Hamad, A., and Ober, C.K., Chem. Mater. 15 (2003) p. 4893.CrossRefGoogle Scholar
48.Flowers, D., Hoggan, E.N., Carbonell, R., and DeSimone, J.M., SPIE Proc. 419 (2002) p. 4690.Google Scholar
49.Bates, F.S. and Fredrickson, G.H., Physics Today 52 (1999) p. 32.CrossRefGoogle Scholar
50.Vogt, B.D., Brown, G.D., RamachandraRao, V.S., and Watkins, J.J., Macromolecules 32 (1999) p. 7907.CrossRefGoogle Scholar
51.Vogt, B.D., RamachandraRao, V.S., Gupta, R.R., Lavery, K.A., Francis, T.J., Russell, T.P., and Watkins, J.J., Macromolecules 36 (2003) p. 4029.CrossRefGoogle Scholar
52.RamachandraRao, V.S., Gupta, R.R., Russell, T.P., and Watkins, J.J., Macromolecules 34 (2001) p. 7923.CrossRefGoogle Scholar
53.Gupta, R.R., Lavery, K.A., Francis, T.J., Webster, J.R.P., Smith, G.S., Russell, T.P., and Watkins, J.J., Macromolecules 36 (2003) p. 346.CrossRefGoogle Scholar
54.Wissinger, R.G. and Paulaitis, M.E., J. Polym. Sci. Pt. B-Polym. Phys. 25 (1987) p. 2497.CrossRefGoogle Scholar
55.Watkins, J.J. and McCarthy, T.J., Macromolecules 28 (1995) p. 4067.CrossRefGoogle Scholar
56.Watkins, J.J. and McCarthy, T.J., Macromolecules 27 (1994) p. 4845.CrossRefGoogle Scholar
57.Sun, D.H., Zhang, R., Liu, Z.M., Huang, Y., Wang, Y., He, J., Han, B.X., and Yang, G.Y., Macromolecules 38 (2005) p. 5617.CrossRefGoogle Scholar
58.Watkins, J.J. and McCarthy, T.J., Chem. Mater. 7 (1995) p. 1991.CrossRefGoogle Scholar
59.Pai, R.A., Humayun, R., Schulberg, M.T., Sengupta, A., Sun, J.N., and Watkins, J.J., Science 303 (2004) p. 507.CrossRefGoogle Scholar
60.Nagarajan, S., Pai, R.A., Russell, T.P., Watkins, J.J., Li, M., Bosworth, K.S., Busch, P., Smilgies, D.M., and Ober, C.K., Adv. Mater. (2005) submitted.Google Scholar
61.Du, P., Li, M.Q., Douki, K., Li, X.F., Garcia, C.R.W., Jain, A., Smilgies, D.M., Fetters, L.J., Gruner, S.M., Wiesner, U., and Ober, C.K., Adv. Mater. 16 (2004) p. 953.CrossRefGoogle Scholar
62.Vogt, B.D., Pai, R.A., Lee, H.J., Hedden, R.C., Soles, C.L., Wu, W.L., Lin, E.K., Bauer, B.J., and Watkins, J.J., Chem. Mater. 17 (2005) p. 1398.CrossRefGoogle Scholar
63.Pai, R.A. and Watkins, J.J., Adv. Mater. (2005) accepted.Google Scholar
64.Stallings, W.E. and Lamb, H.H., Langmuir 19 (2003) p. 2989.CrossRefGoogle Scholar
65.Hess, D.M. and Watkins, J.J. (2005) unpublished manuscript.Google Scholar
66.Bhatnagar, G. and Watkins, J.J. (2005) unpublished manuscript.Google Scholar
67.Shah, P.S., Hanrath, T., Johnston, K.P., and Korgel, B.A., J. Phys. Chem. B 108 (2004) p. 9574.CrossRefGoogle Scholar
68.Cason, J.P., Khambaswadkar, K., and Roberts, C.B., Ind. Eng. Chem. Res. 39 (2000) p. 4749.CrossRefGoogle Scholar
69.Liu, J.C., Raveendran, P., Shervani, Z., Ikushima, Y., and Hakuta, Y., Chem. Eur. J. 11 (2005) p. 1854.CrossRefGoogle Scholar
70.Kitchens, C.L. and Roberts, C.B., Ind. Eng. Chem. Res. 43 (2004) p. 6070.CrossRefGoogle Scholar
71.Zhang, H.L., Han, B.X., Liu, J.C., Zhang, X.G., Yang, G.Y., and Zhao, H.Z., J. Supercrit. Fluids 30 (2004) p. 89.CrossRefGoogle Scholar
72.McLeod, M.C., Anand, M., Kitchens, C.L., and Roberts, C.B., Nano Lett. 5 (2005) p. 461.CrossRefGoogle Scholar
73.Hanrath, T. and Korgel, B.A., Adv. Mater. 15 (2003) p. 437.CrossRefGoogle Scholar
74.Holmes, J.D., Johnston, K.P., Doty, R.C., and Korgel, B.A., Science 287 (2000) p. 1471.CrossRefGoogle Scholar
75.Davidson, F.M., Wiacek, R., and Korgel, B.A., Chem. Mater. 17 (2005) p. 230.CrossRefGoogle Scholar
76.Davidson, F.M., Schricker, A.D., Wiacek, R.J., and Korgel, B.A., Adv. Mater. 16 (2004) p. 646.CrossRefGoogle Scholar