Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T02:32:33.280Z Has data issue: false hasContentIssue false

Energetics at the nanoscale: Impacts for geochemistry, the environment, and materials

Published online by Cambridge University Press:  11 February 2016

Alexandra Navrotsky*
Affiliation:
University of California, Davis, USA; anavrotsky@ucdavis.edu
Get access

Abstract

Nanoparticles are ubiquitous in both natural and synthetic environments, providing much of the chemical reactivity for geochemical, planetary, environmental, and technological processes. However, this reactivity and differences between the bulk and nanoscale are thermodynamically, as well as kinetically, controlled. Energetic effects arising from differences in surface energies of different nanomaterials lead to changes in which phases are thermodynamically stable under given conditions. This results in crossovers in polymorphic stability as a function of particle size and substantial shifts in the positions of dehydration and redox equilibria. Examples of these phenomena in aluminum, cobalt, iron, and manganese oxides are presented, and implications for catalysts, battery materials, and other functional oxides are discussed. A hypothesis is presented that low surface energy and the resulting relatively weak water binding on the surface leads to better function when electrons or ions are transferred at the solid-solution interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Radha, A.V., Forbes, T., Killian, C.E., Gilbert, P.U.P.A., Navrotsky, A., Proc. Natl. Acad. Sci. U.S.A. 107, 16438 (2010).CrossRefGoogle Scholar
Navrotsky, A., ChemPhysChem 12, 2207 (2011).CrossRefGoogle Scholar
Navrotsky, A., Int. J. Quantum Chem. 109, 2647 (2009).CrossRefGoogle Scholar
Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
Navrotsky, A., J. Am. Ceram. Soc. 97, 3349 (2014).CrossRefGoogle Scholar
McHale, J.M., Auroux, A., Perrotta, A.J., Navrotsky, A., Science 277, 788 (1997).CrossRefGoogle Scholar
Ushakov, S.V., Navrotsky, A., Appl. Phys. Lett. 87, 164103 (2005).CrossRefGoogle Scholar
Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., Whitfield, H.J., Proc. Natl. Acad. Sci. U.S.A. 99 (Suppl. 2), 6476 (2002).CrossRefGoogle Scholar
Levchenko, A.A., Li, G., Boerio-Goates, J., Woodfield, B.F., Navrotsky, A., Chem. Mater. 18, 6324 (2006).CrossRefGoogle Scholar
Castro, R.H.R., Ushakov, S.V., Gengembre, L., Gouvêa, D., Navrotsky, A., Chem. Mater. 18, 1867 (2006).CrossRefGoogle Scholar
Majzlan, J., Navrotsky, A., Casey, W.H., Clays Clay Miner. 48, 699 (2000).CrossRefGoogle Scholar
Navrotsky, A., Mazeina, L., Majzlan, J., Science 319, 1635 (2008).CrossRefGoogle Scholar
Birkner, N., Navrotsky, A., Am. Mineral. 97, 1291 (2012).CrossRefGoogle Scholar
Navrotsky, A., Ma, C., Lilova, K., Birkner, N., Science 330, 199 (2010).CrossRefGoogle Scholar
Birkner, N., Navrotsky, A., Proc. Natl. Acad. Sci. U.S.A. 111, 6209 (2014).CrossRefGoogle Scholar
Lilova, K.I., Pearce, C.I., Rosso, K.M., Navrotsky, A., ChemPhysChem 15 3655 (2014).CrossRefGoogle Scholar
Birkner, N., Nayeri, S., Pashaei, B., Najafpour, M., Casey, W.H., Navrotsky, A., Proc. Natl. Acad. Sci. U.S.A. 110, 8801 (2013).CrossRefGoogle Scholar
Drazin, J., Castro, R.H.R., J. Phys. Chem. C 118, 10131 (2014).CrossRefGoogle Scholar
Maram, P.S., Costa, G.C.C., Navrotsky, A., Angew. Chem. Int. Ed. Engl. 52, 12139 (2013).CrossRefGoogle Scholar
Qian, D., Hinuma, Y., Chen, H., Du, L.-S., Carroll, K.J., Ceder, G., Grey, C.P., Meng, Y.S., J. Am. Chem. Soc. 134, 6096 (2012).CrossRefGoogle Scholar