Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T01:05:23.147Z Has data issue: false hasContentIssue false

Electronic Tongues

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The use of multivariate data analysis combined with sensors with partially overlapping selectivities has become a very powerful tool in measurement technology. These systems are often referred to as artificial senses, because they function in a way similar to the human senses. One such system is the electronic nose. This article focuses on similar concepts as the electronic nose, but for use in aqueous solutions. Because these systems are related to the human sense of taste in the same way the electronic nose is related to olfaction, they have been termed taste sensors, or “electronic tongues.” Various measurement principles that can be used in electronic tongues are described and discussed in this article. These include electrochemical techniques such as potentiometry, voltammetry, and conductometry. Also, optical techniques based on light absorption at specific wavelengths or the use of surface plasmon resonance are described. Mass-sensitive devices based on piezoelectric crystals have also been used and are described here. A special emphasis is given to the voltammetric electronic tongue.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Winquist, F., Krantz-Rülcker, C., and Lundström, I., in Sensors Update, Chapter 2.2, edited by Baltes, H., Fedder, G.K., and Korvink, J.G. (Wiley-VHC, Weinheim, Germany, 2003).Google Scholar
2Gardner, J.W. and Bartlett, P.N., Sens. Actuators, B 18–19 (1994) p. 211.Google Scholar
3Winquist, F., Sundgren, H., and Lundström, I., in Biosensors for Food Analysis, edited by Scott, A.O. (Royal Society of Chemistry, Athenaeum Press, Gateshead, UK, 1998).Google Scholar
4Toko, K., Mater. Sci. Eng., C 4 (1996) p. 69.CrossRefGoogle Scholar
5Legin, A., Rudnitskaya, A., Vlasov, Y., Natale, C. Di, Davide, F., and D'Amico, A., in Tech. Dig. Eurosensors X (Leuven, Belgium, 1996) p. 427.Google Scholar
6Winquist, F., Wide, P., and Lundström, I., Anal. Chim. Acta 357 (1997) p. 21.CrossRefGoogle Scholar
7Toko, K., Sens. Actuators, B 64 (2000) p. 205.CrossRefGoogle Scholar
8Toko, K., Meas. Sci. Technol. 9 (1998) p. 1919.CrossRefGoogle Scholar
9Taste Sensing System SA401, Anritsu Corp., Japan.Google Scholar
10Astree Liquid & Taste Analyzer, Alpha M.O.S., Toulouse, France.Google Scholar
11SensET AB, Skärblacka, Sweden.Google Scholar
12Bard, A.J. and Faulkner, L.R., in Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, New York, 1980).Google Scholar
13Wang, J., in Analytical Electrochemistry (Wiley-VCH, Weinheim, Germany, 1994).Google Scholar
14Kissinger, P.T. and Heineman, W.R., in Laboratory Techniques in Electroanalytical Chemistry, 2nd ed. (Marcel Dekker, New York, 1996).Google Scholar
15Riul, A., Malmegrim, R.R., Fonseca, F.J., and Mattoso, L.H.C., Biosens. Bioelectron. 18 (11) (2003) p. 1365.CrossRefGoogle Scholar
16Nanto, H., Hamaguchi, Y., Komura, M., Takayama, Y., and Kobayashi, T., Sens. Mater. 14 (2002) p. 1.Google Scholar
17Lucklum, R. and Hauptmann, P., Sens. Actuators, B 70 (2000) p. 30.CrossRefGoogle Scholar
18Toko, K., Hayashi, K., Yamanaka, M., and Yamafuji, K., in Tech. Dig. 9th Sens. Symp. (1990) p. 193.Google Scholar
19Hayashi, K., Yamanaka, M., Toko, K., and Yamafuji, K., Sens. Actuators, B 2 (1990) p. 205.CrossRefGoogle Scholar
20Toko, K., Biomimetic Sensor Technology (Cambridge University Press, Cambridge, UK, 2000).CrossRefGoogle Scholar
21Toko, K., Bios. Bioelectron. 13 (1998) p. 701.CrossRefGoogle Scholar
22Imamura, T., Toko, K., Yanagisawa, S., and Kume, T., Sens. Actuators, B 37 (1996) p. 179.CrossRefGoogle Scholar
23Yamada, H., Mizota, Y., Toko, K., and Doi, T., Mater. Sci. Eng. C 5 (1997) p. 41.CrossRefGoogle Scholar
24Fukunaga, T., Toko, K., Mori, S., Nakabayashi, Y., and Kanda, M., Sens. Mater. 8 (1) (1996) p. 47.Google Scholar
25Taniguchi, A., Naito, Y., Maeda, N., Sato, Y., and Ikezaki, H., Sens. Mater. 11 (7) (1999) p. 437.Google Scholar
26Di Natale, C., Davide, F., D'Amico, A., Legin, A., Rudnitskaya, A., Selezenev, B.L., and Vlasov, Y., in Tech. Dig. Eurosensors X (Leuven, Belgium, 1996) p. 1345.Google Scholar
27Di, C. Natale, Macagnano, A., Davide, F., D'Amico, A., Legin, A., Vlasov, Y., Rudnitskaya, A., and Selezenev, B.L., Sens. Actuators, B 44 (1997) p. 423.Google Scholar
28Legin, A., Rudnitskaya, A., Lvova, L., Vlasov, Y., Natale, C. Di, and D'Amico, A., Anal. Chim. Acta 484 (2003) p. 33.CrossRefGoogle Scholar
29Legin, A., Rudinitskaya, A., Vlasov, Y., Natale, C. Di, Mazzone, E., and D'Amico, A., Electroanalysis 11 (10–11) (1999) p. 814.3.0.CO;2-7>CrossRefGoogle Scholar
30Legin, A., Smirnova, A., Rudinitskaya, A., Lvova, L., Suglobova, E., and Vlasov, Y., Anal. Chim. Acta 385 (1999) p. 131.CrossRefGoogle Scholar
31Mortensen, J., Legin, A., Ipatov, A., Rudinitskaya, A., Vlasov, Y., and Hjuler, K., in Anal. Chim. Acta 403 (2000) p. 273.CrossRefGoogle Scholar
32Bergveld, P., IEEE Trans. Biomed. Eng. BME–19 (1970).Google Scholar
33Kanai, Y., Shimizu, M., Uchida, H., Nakahara, H., Zhou, C.G., Maekawa, H., and Katsube, T., Sens. Actuators, B 20 (1994) p. 175.CrossRefGoogle Scholar
34Sasaki, Y., Kanai, Y., Uchida, H., and Katsube, T., Sens. Actuators, B 24–25 (1995) p. 819.CrossRefGoogle Scholar
35George, M., Parak, W., and Gaub, H., Sens. Actuators, B 69 (2000) p. 266.CrossRefGoogle Scholar
36Murakami, Y., Kikuchi, T., Yamamura, A., Sakaguchi, T., Yokoyama, K., Ito, Y., Takiue, M., Uchida, H., Katsube, T., and Tamiya, E., Sens. Actuators, B 53 (1998) p. 163.CrossRefGoogle Scholar
37Winquist, F., Krantz-Rülcker, C., Wide, P., and Lundström, I., Meas. Sci. Technol. 9 (1998) p. 1937.CrossRefGoogle Scholar
38Koller, U., Hemmingsson, M., &stergren, K., Winquist, F., and Krantz-Rülcker, C., “The Electronic Tongue as an On-Line Sensor in the Dairy Industry” (2004) unpublished.Google Scholar
39Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., and Winquist, F., Sens. Actuators, B 76 (2001) p. 449.CrossRefGoogle Scholar
40Krantz-Rülcker, C., Stenberg, M., Winquist, F., and Lundström, I., Anal. Chim. Acta 426 (2001) p. 217.CrossRefGoogle Scholar
41Ivarsson, P., Kikkawa, Y., Winquist, F., Krantz-Rülcker, C., Höjer, N.E., Hayashi, K., Toko, K., and Lundström, I., Anal. Chim. Acta 49 (2001) p. 59.CrossRefGoogle Scholar
42Rydberg, E., Winquist, F., Krantz-Rülcker, C., and Lundström, I., “Determination of Heavy Metals in Soil by Use of a Voltammetric Electronic Tongue” (2004) unpublished.Google Scholar
43Soderstrom, C., Rudnitskaya, A., Legin, A., and Krantz-Rulcker, C., “Differentiation of Four Aspergillus Species and One Zygosaccharomyces with Two Electronic Tongues Based on Different Techniques” (2004) unpublished.CrossRefGoogle Scholar
44Winquist, F., Holmin, S., Krantz-Rulcker, C., Wide, P., and Lundstrom, I., Anal. Chim. Acta 406 (2000) p. 147.CrossRefGoogle Scholar
45Winquist, F., Rydberg, E., Holmin, S., Krantz-Rulcker, C., and Lundstrom, I., Anal. Chim. Acta 471 (2000) p. 159.CrossRefGoogle Scholar
46Carlsson, A., Krantz-Rulcker, C., and Winquist, F., “An Electronic Tongue as a Tool for Wet-End Control,” submitted to Nordic Pulp and Paper Research Journal (2004).Google Scholar
47Soderstrom, C., Boren, H., Winquist, F., and Krantz-Rulcker, C., “Analysis of Mold Growth in Liquid Media with an Electronic Tongue,” unpublished.Google Scholar
48Winquist, F., Bjorkland, R., Krantz-Rulcker, C., Lundstrom, I., Ostergren, K., and Skoglund, T., Sens. Actuators, B (2004) submitted.Google Scholar
49Ferreira, M., Riul, A., Wohnrath, K., Fonesca, F.J., Oliveira, O.N., and Mattoso, L.H.C., Anal. Chem. 75 (2003) p. 953.CrossRefGoogle Scholar
50Riul, A., Soto, A.M. G., Mello, S.V., Bone, S., Taylor, D.M., and Mattoso, L.H.C., Synth. Met. 132 (2003) p. 109.CrossRefGoogle Scholar
51Borngraber, R., Hartmann, J., Lucklum, R., Rosler, S., and Hauptmann, P., Sens. Actuators, B 65 (2000) p. 273.CrossRefGoogle Scholar
52Ezaki, S. and Iiyama, S., Sens. Mater. 13 (2) (2001) p. 119.Google Scholar
53Yamazaki, T., Kondoh, J., Matsui, Y., and Shiokawa, S., Sens. Actuators 83 (2000) p. 34.CrossRefGoogle Scholar
54Kondoh, J. and Shiokawa, S., Jpn. J. Appl. Phys. 33 (1994) p. 3095.CrossRefGoogle Scholar
55Kondoh, J. and Shiokawa, S., in Tech. Dig. Transducers '95-Eurosensors IX (Stockholm, 1995) p. 716.Google Scholar
56Campitelli, A., Wlodarski, W., and Hoummady, M., Sens. Actuators, B 49 (1998) p. 195.CrossRefGoogle Scholar
57Lee, S.M., Jang, S.W., Lee, S.H., Kim, J.H., Kim, S.H., and Kang, S.W., Sens. Mater. 13 (2002) p. 11.Google Scholar
58Winquist, F., Wide, P., Eklov, T., Hjort, C., and Lundstrom, I., J. Food Proc. Eng. 22 (1999) p. 37.CrossRefGoogle Scholar
59Wide, P., Winquist, F., and Kalaykov, I., in Proc. Second Int. Conf. Information Fusion, FUSION '99 (1999) p. 1444.Google Scholar
60Natale, C. Di, Paolesse, R., Macagnano, A., Mantini, A., D'Amico, A., Ubigli, M., Legin, A., Lvova, L., Rudinitskaya, A., and Vlasov, Y., Sens. Actuators, B 69 (2000) p. 243.Google Scholar