Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T18:51:00.688Z Has data issue: false hasContentIssue false

Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Identifying candidate materials to replace SiO2 as the gate dielectric for complementary metal oxide semiconductor (CMOS) applications is a difficult task. Proper assessment of the critical materials requirements is essential, and it is important to devise an approach to predict materials properties without having to make many unnecessary measurements on high-ĸ materials. Such an approach helps to eliminate unlikely candidates and focus on the most promising ones. Clearly, this type of modeling approach requires an understanding of several physical and chemical characteristics, including the bonding and electronic structure, band alignment with Si, and the nature of the dielectric constant and interface properties. We present a critical assessment of some existing methods and models of materials properties, as well as a comparison of the present modeling approach with some experimentally determined values.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys. 89 (2001) p. 5243.CrossRefGoogle Scholar
2.Kingon, A.I., Maria, J.-P., and Streiffer, S.K., Nature 406 (2000) p. 1032.CrossRefGoogle Scholar
3.Plummer, J.D. and Griffin, P.B., in Proc. IEEE, Vol. 89 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 240.Google Scholar
4.Hubbard, K.J. and Schlom, D.G., J. Mater. Res. 11 (1996) p. 2757.CrossRefGoogle Scholar
5.Robertson, J. and Chen, C.W., Appl. Phys. Lett. 74 (1999) p. 1168.CrossRefGoogle Scholar
6.Robertson, J., J. Vac. Sci. Technol., B 18 (2000) p. 1785.CrossRefGoogle Scholar
7.Lucovsky, G., J. Vac. Sci. Technol., A 19 (2001) p. 1553.CrossRefGoogle Scholar
8.French, R.H., Glass, S.J., Ohuchi, F.S., Xu, Y.N., and Ching, W.Y., Phys. Rev. B 49 (1994) p. 5153.CrossRefGoogle Scholar
9.Peacock, P.W. and Robertson, J. (unpublished).Google Scholar
10.Demkov, A., Phys. Status Solidi B 226 (2001) p. 57.3.0.CO;2-L>CrossRefGoogle Scholar
11.Harrison, W.A., Elementary Electronic Structure (World Scientific, Singapore, 1999).CrossRefGoogle Scholar
12.Rignanese, G.M., Ginze, X., and Pasquarello, A., Phys. Rev. B 63 104305 (2001).CrossRefGoogle Scholar
13.Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., and Wong, H.S.P., in Proc. IEEE, Vol. 89 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 259.Google Scholar
14.Burstein, E., Brodsky, M.H., and Lucovsky, G., Int. J. Quantum Chem. 1S (1967) p. 759.Google Scholar
15.Tessman, J.R., Kahn, A.H., and Shockley, W., Phys. Rev. 92 (1953) p. 890.CrossRefGoogle Scholar
16.Shannon, R.D., J. Appl. Phys. 73 (1993) p. 348.CrossRefGoogle Scholar
17.Kittel, C., Solid State Physics (John Wiley & Sons, New York, 1967) p. 382.Google Scholar
18.Devine, R.A.B. and Revesz, R.G., J. Appl. Phys. 90 (2001) p. 389.CrossRefGoogle Scholar
19.Cava, R.F., Peck, W.P., and Krajewski, J.J., Nature 377 (1995) p. 215.CrossRefGoogle Scholar
20.Chambers, S.A., Liang, Y., Yu, Z., Droopal, R., and Ramdani, J., Appl. Phys. Lett. 77 (2000) p. 1662.CrossRefGoogle Scholar
21.Miyazaki, S., J. Vac. Sci. Technol. B 19 (2001) p. 2212.CrossRefGoogle Scholar
22.Ludeke, R., Cuberes, M.T., and Cartier, E., Appl. Phys. Lett. 76 (2000) p. 2886.CrossRefGoogle Scholar
23.Afanasev, V.V., Houssa, M., Stesmans, A., and Heyns, M.M., Appl. Phys. Lett. 78 (2001) p. 3073.CrossRefGoogle Scholar
24.Tu, Y. and Tersoff, J., Phys. Rev. Lett. 84 (2000) p. 4393.CrossRefGoogle Scholar
25.Kawamoto, A., Cho, K., Griffin, P., and Dutton, R., J. App. Phys. 90 (2001) p. 1333.CrossRefGoogle Scholar
26.Forster, A.S., Sulimov, V.B., Gejo, F.L., Shluger, A.L., and Nieminen, R.M., Phys. Rev. B 64 224108 (2001).CrossRefGoogle Scholar
27.Stathis, J.H. and Cartier, E., Phys. Rev. Lett. 72 (1994) p. 2745.CrossRefGoogle Scholar
28.Warren, W.L., Vanheusden, K., Schwank, J.R., Fleetwood, D.M., Winokur, P.S., and Devine, R.A.B., Appl. Phys. Lett. 68 (1996) p. 2993.CrossRefGoogle Scholar
29.Park, C.H. and Chadi, D.J., Phys. Rev. Lett. 84 (2000) p. 4717.CrossRefGoogle Scholar
30.Houssa, M., Naili, M., Heyns, M.M., and Stesmans, A., J. Appl. Phys. 89 (2001) p. 792.CrossRefGoogle Scholar