Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:59:09.276Z Has data issue: false hasContentIssue false

Elastically strained nanowires and atomic sheets

Published online by Cambridge University Press:  12 February 2014

Dapeng Yu
Affiliation:
School of Physics, Peking University; yudp@pku.edu.cn
Ji Feng
Affiliation:
School of Physics, Peking University; jfeng11@pku.edu.cn
James Hone
Affiliation:
Department of Electronic Engineering, Columbia University; jh2228@columbia.edu
Get access

Abstract

Deformation is one of the most fundamental aspects of materials. While mechanical failure is an outcome of deformation to be avoided, elastic deformation can have a pronounced and positive impact on materials properties. The effect of elastic deformation becomes even more evident at low dimensions, because at the micro/nanoscale, materials and structures can usually sustain exceptionally high elastic strains before failure. The purpose of this overview is to present a summary of recent progress on elastically strained nanowires and atomic sheets. First, we will demonstrate that nanowires can sustain large elastic strains, and their bending modulus increases exponentially as the nanowire diameter decreases. Second, the elastic strain has been found to significantly modify the electronic structure of semiconductor nano/microwires to induce a metal–insulator transition at room temperature and to efficiently transform the mechanical energy into electricity. These recent developments point to potential future applications based on the elastic strain engineering of nanoscale materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ieong, M., Doris, B., Kedzierski, J., Rim, K., Yang, M., Science 306, 2057 (2004).CrossRefGoogle Scholar
Hiralal, P., Unalan, H.E., Amaratunga, G.A.J., Nanotechnology 23, 194002 (2012).CrossRefGoogle Scholar
Wong, E.W., Sheehan, P.E., Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P., Phys. Rev. B 73, 235409 (2006).CrossRefGoogle Scholar
Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J., Phys. Rev. Lett. 96, 075505 (2006).Google Scholar
Han, X.D., Zhang, Y.F., Zheng, K., Zhang, X.N., Zhang, Z., Hao, Y.J., Guo, X.Y., Yuan, J., Wang, Z.L., Nano Lett. 7, 452 (2007).Google Scholar
Han, X., Zheng, S., Zhang, Y., Zheng, K., Liu, X., Chen, G., Hao, Y., Guo, X., Nano Lett. 8, 2258 (2008).Google Scholar
Zheng, K., Han, X., Wang, L., Yue, Y., Zhang, Y., Qin, Y., Zhang, X., Zhang, Z., Nano Lett. 9, 2471 (2009).CrossRefGoogle Scholar
Zheng, K., Wang, C., Cheng, Y.-Q., Yue, Y., Han, X., Zhang, Z., Shan, Z., Mao, S.X., Ye, M., Yin, Y., Ma, E., Nat. Commun. 1, 24 (2010).Google Scholar
Wei, B., Zheng, K., Ji, Y., Zhang, Y., Zhang, Z., Han, X., Nano Lett. 12, 4595 (2012).Google Scholar
Yue, Y., Liu, P., Zhang, Z., Han, X., Ma, E., Nano Lett. 11, 3151 (2011).CrossRefGoogle Scholar
Han, X.B., Jing, G.Y., Zhang, X.Z., Ma, R., Song, X., Xu, J., Liao, Z., Wang, N., Yu, D., Nano Res. 2, 553 (2009).Google Scholar
Han, X.B., Kou, L.Z., Lang, X.L., Xia, J.B., Wang, N., Qin, R., Lu, J., Xu, J., Liao, Z.M., Zhang, X.Z., Shan, X.D., Song, X.F., Gao, J.Y., Guo, W.L., Yu, D.P., Adv. Mater. 21, 4937 (2009).Google Scholar
Han, X., Kou, L., Zhang, Z., Zhang, Z., Zhu, X., Xu, J., Liao, Z., Guo, W., Yu, D., Adv. Mater. 24, 4707 (2012).CrossRefGoogle Scholar
Liao, Z.M., Wu, H.C., Fu, Q., Fu, X., Zhu, X., Xu, J., Shvets, I.V., Zhang, Z., Guo, W., Leprince-Wang, Y., Zhao, Q., Wu, X., Yu, D.P., Sci. Rep. 2, 452 (2012).CrossRefGoogle Scholar
He, R.H., Yang, P.D., Nat. Nanotechnol. 1, 42 (2006).Google Scholar
Milne, J.S., Rowe, A.C.H., Arscott, S., Phys. Rev. Lett. 105, 226802 (2010).CrossRefGoogle Scholar
Liu, Z., Wu, J., Duan, W.H., Lagally, M.G., Liu, F., Phys. Rev. Lett. 105, 016802 (2010).CrossRefGoogle Scholar
Smith, A.M., Mohs, A.M., Nie, S., Nat. Nanotechnol. 4, 56 (2008).CrossRefGoogle Scholar
Cao, J., Ertekin, E., Srinivasan, V., Fan, W., Huang, S., Zheng, H., Yim, J.W.L., Khanal, D.R., Ogletree, D.F., Wu, J., Nat. Nanotechnol. 13, 132 (2009).Google Scholar
Wang, Z.L., Song, J.H., Science 312, 242 (2006).Google Scholar
Wang, Z.L., Nano Res. 1, 1 (2008).Google Scholar
Wang, X.D., Song, J.H., Liu, J., Wang, Z.L., Science 316, 102 (2007).Google Scholar
Qin, Y., Wang, X., Wang, Z.L., Nature 451, 908 (2008).CrossRefGoogle Scholar
Zhu, G., Yang, R.S., Wang, S.H., Wang, Z.L., Nano Lett. 10, 3151 (2010).Google Scholar
Xu, S., Hansen, B.J., Wang, Z.L., Nat. Commun. 1, 93 (2010).Google Scholar
Zhou, J., Gu, Y.D., Fei, P., Mai, W.J., Gao, Y.F., Yang, R.S., Bao, G., Wang, Z.L., Nano Lett. 8, 3035 (2008).Google Scholar
Yang, Q., Wang, W.H., Xu, S., Wang, Z.L., Nano Lett. 11, 4012 (2011).Google Scholar
Wang, W., Zhao, Q., Li, H., Wu, H., Zou, D., Yu, D., Adv. Funct. Mater. 22, 2775 (2012).Google Scholar
Li, H., Zhao, Q., Wang, W., Dong, H., Xu, D.S., Zou, G.J., Duan, H.L., Yu, D.P., Nano Lett. 13, 1271 (2013).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Nature 438, 197 (2005).Google Scholar
Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P., Nature 438, 201 (2005).Google Scholar
Lee, C., Wei, X., Kysar, J.W., Hone, J., Science 321, 385 (2008).Google Scholar
Wei, X., Fragneaud, B., Marianetti, C.A., Kysar, J.W., Phys. Rev. B 80, 205407 (2009).Google Scholar
Lee, G.-H., Cooper, R.C., An, S.J., Lee, S., van der Zande, A., Petrone, N., Hammerberg, A.G., Lee, C., Crawford, B., Oliver, W., Kysar, J.W., Hone, J., Science 340, 1073 (2013).Google Scholar
Pereira, V., Castro Neto, A., Phys. Rev. Lett. 103, 046801 (2009).Google Scholar
Huang, M., Yan, H., Heinz, T.F., Hone, J., Nano Lett. 10, 4074 (2010).CrossRefGoogle Scholar
Levy, N., Burke, S.A., Meaker, K.L., Panlasigui, M., Zettl, A., Guinea, F., Castro Neto, A.H., Crommie, M.F., Science 329, 544 (2010).Google Scholar
Feng, J., Qian, X., Huang, C.W., Li, J., Nat. Photonics 6, 866 (2012).CrossRefGoogle Scholar
Van der Zande, A., Hone, J., Nat. Photonics 6, 804 (2012).CrossRefGoogle Scholar
Castellanos-Gomez, A., Roldán, R., Cappelluti, E., Buscema, M., Guinea, F., van der Zant, H.S. J., Steele, G.A., Nano Lett. 13 (11), 5361 (2013).Google Scholar
Nam, D., Sukhdeo, D.S., Kang, J.-H., Petykiewicz, J., Lee, J.H., Shik Jung, W., Vučković, J., Brongersma, M.L., Saraswat, K.C., Nano Lett. 13 (7), 3118 (2013).CrossRefGoogle Scholar