Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T18:51:49.613Z Has data issue: false hasContentIssue false

Diamond surface conductivity: Properties, devices, and sensors

Published online by Cambridge University Press:  12 June 2014

Christopher I. Pakes
Affiliation:
Department of Physics, La Trobe University, Victoria, Australia; c.pakes@latrobe.edu.au
Jose A. Garrido
Affiliation:
Walter Schottky Institute and Physics Department, Technische Universität München, Germany; garrido@wsi.tum.de
Hiroshi Kawarada
Affiliation:
Department of Electronics and Phonics Systems and Department of Nanoscience and Nanotechnology, Waseda University, Japan; kawarada@waseda.jp
Get access

Abstract

Hydrogen termination of diamond lowers its ionization energy, driving electron transfer from the valence band into an adsorbed water layer or to a strong molecular acceptor. This gives rise to p-type surface conductivity with holes confined to a subsurface layer of a few nanometers thickness. The transfer doping mechanism, the electronic behavior of the resulting hole accumulation layer, and the development of robust field-effect transistor (FET) devices using this platform are reviewed. An alternative method of modulating the hole carrier density has been developed based upon an electrolyte-gate architecture. The operation of the resulting “solution-gated” FET architecture in two contemporary applications will be described: the charge state control of nitrogen-vacancy centers in diamond and biosensing. Despite 25 years of work in this area, our knowledge of surface conductivity of diamond continues to develop.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cui, J.B., Ristein, J., Ley, L., Phys. Rev. Lett. 81, 429 (1998).Google Scholar
Landstrass, M.I., Ravi, K.V., Appl. Phys. Lett. 55, 975 (1989).Google Scholar
Maier, F., Riedel, M., Mantel, B., Ristein, J., Ley, L., Phys. Rev. Lett. 85, 3472 (2000).Google Scholar
Strobel, P., Riedel, M., Ristein, J., Ley, L., Nature 430, 439 (2004).Google Scholar
Strobel, P., Riedel, M., Ristein, J., Ley, L., Boltalina, O., Diam. Relat. Mater. 14, 451 (2005).CrossRefGoogle Scholar
Chen, W., Qi, D., Gao, X., Wee, A.T.S., Prog. Surf. Sci. 84, 279 (2009).Google Scholar
Langley, D., Smets, Y., Stark, C.B., Edmonds, M.T., Tadich, A., Rietwyk, K.J., Schenk, A., Wanke, M., Wu, Q.-H., Barnard, P., Ley, L., Pakes, C.I., Appl. Phys. Lett. 100, 032103 (2012).Google Scholar
Russell, S.A.O., Cao, L., Qi, D., Tallaire, A., Crawford, K.G., Wee, A.T.S., Moran, D.A., Appl. Phys. Lett. 103, 202112 (2013).CrossRefGoogle Scholar
Edmonds, M.T., Wanke, M., Tadich, A., Vulling, H.M., Rietwyk, K.J., Sharp, P.L., Stark, C.B., Smets, Y., Schenk, A., Wu, Q.-H., Ley, L., Pakes, C.I., J. Chem. Phys. 136, 124701 (2012).Google Scholar
Mitsumoto, R., Seki, K., Araki, T., Ito, E., Ouchi, Y., Achiba, Y., Kikuchi, K., Yajima, S., Kawasaki, S., Okino, F., Touhara, H., Kurosaki, H., Sonoda, T., Kobayashi, H., J. Electron. Spectrosc. Relat. Phenom. 78, 453 (1996).Google Scholar
Edmonds, M.T., Pakes, C.I., Mammadov, S., Zhang, W., Tadich, A., Ristein, J., Ley, L., Appl. Phys. Lett. 98, 102101 (2011).CrossRefGoogle Scholar
Nebel, C.E., Sauerer, C., Ertl, F., Stutzmann, M., Graeff, C.F.O., Bergonzo, P., Williams, O.A, Jackman, R., Appl. Phys. Lett. 79, 4541 (2001).CrossRefGoogle Scholar
Garrido, J.A., Heimbeck, T., Stutzmann, M., Phys. Rev. B 71, 245310 (2005).Google Scholar
Yamaguchi, T., Watanabe, E., Osato, H., Tsuya, D., Deguchi, K., Watanabe, T., Takeya, H., Takano, Y., Kurihara, S., Kawarada, H., J. Phys. Soc. Jpn. 82, 074718 (2013).CrossRefGoogle Scholar
Rezek, B., Watanbe, H., Nebel, C.E., Appl. Phys. Lett. 88, 042110 (2006).Google Scholar
Dankerl, M., Hauf, M.V., Stutzmann, M., Garrido, J.A., Phys. Status Solidi A 209, 1631 (2012).CrossRefGoogle Scholar
Alfonso, D., Drabold, D.A., Ulloa, S.E., Phys. Rev. B 51, 14669 (1995).CrossRefGoogle Scholar
Gan, L., Baskin, E., Saguy, C., Kalish, R., Phys. Rev. Lett. 96, 196808 (2006).CrossRefGoogle Scholar
Bolker, A., Saguy, C., Tordjman, M., Gan, L., Kalish, R., Phys. Rev. B 83, 155434 (2011).CrossRefGoogle Scholar
Nebel, C.E., Rezek, B., Zrenner, A., Phys. Status Solidi A 201, 2432 (2004).Google Scholar
Edmonds, M.T., Pakes, C.I., Ley, L., Phys. Rev. B 81, 085314 (2010).Google Scholar
Kawarada, H., Aoki, M., Itoh, I., Appl. Phys. Lett. 65, 1563 (1994).CrossRefGoogle Scholar
Itoh, H., Kawarada, H., Jpn. J. Appl. Phys. 34, 4677 (1995).CrossRefGoogle Scholar
Kawarada, H., Surf. Sci. Rep. 26, 205 (1996).CrossRefGoogle Scholar
Gluche, P., Aleksov, A., Vescan, A., Ebert, W., Kohn, E., IEEE Electron Device Lett. 18, 547 (1997).Google Scholar
Tsugawa, K., Noda, H., Hirose, K., Kawarada, H., Phys. Rev. B 81, 045303 (2010).Google Scholar
Taniuchi, H., Umezawa, H., Arima, T., Tachiki, M., Kawarada, H., IEEE Electron Device Lett. 22, 390 (2001).Google Scholar
Aleksov, A., Denisenko, A., Spitzberg, U., Jenkins, T., Ebert, W., Kohn, E., Diam. Relat. Mater. 11, 382 (2002).Google Scholar
Ueda, K., Kasu, M., Yamauchi, Y., Makimoto, T., Schwitters, M., Twitchen, D.J., Scarsbrook, G.A., Coe, S.E., IEEE Electron Device Lett. 27, 570 (2006).Google Scholar
Russel, S.A.O., Sharabi, S., Tallaire, A., Moran, D.A.J., IEEE Electron Device Lett. 33, 570 (2012).Google Scholar
Matsudaira, H., Miyamoto, S., Ishizaka, H., Umezawa, H., Kawarada, H., IEEE Electron Device Lett. 25, 480 (2004).Google Scholar
Hirama, K., Takayanagi, H., Yamauchi, S., Jingu, Y., Umezaw, H., Kawarada, H., IEEE IEDM (2007), p. 873.Google Scholar
Kawarada, H., Jpn. J. Appl. Phys. 51, 090111 (2012).Google Scholar
Hirama, K., Kasu, M., Jpn. J. Appl. Phys. 51, 090112 (2012).Google Scholar
Kueck, D., Schmidt, A., Denisenko, A., Kohn, E., Diam. Relat. Mater. 19, 166 (2010).CrossRefGoogle Scholar
Hiraiwa, A., Daicho, A., Kurihara, S., Yokoyama, Y., Kawarada, H., J. Appl. Phys. 112, 124504 (2012).Google Scholar
Kawarada, H., Araki, Y., Sakai, T., Ogawa, T., Umezawa, H., Phys. Status Solidi A 185, 79 (2001).Google Scholar
Garrido, J.A., Hartl, A., Dankerl, M., Reitinger, A., Eickhoff, M., Helwig, A., Muller, G., Stutzmann, M., J. Am. Chem. Soc. 130, 4177 (2008).Google Scholar
Garrido, J.A., Nowy, S., Hartl, A., Stutzmann, M., Langmuir 24, 3897 (2008).Google Scholar
Dankerl, M., Lippert, A., Birner, S., Stuetzel, E.U., Stutzmann, M., Garrido, J.A., Phys. Rev. Lett. 106, 196103 (2011).Google Scholar
Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Mater. 8, 383 (2009).Google Scholar
Acosta, V., Hemmer, P., MRS Bull. 38 (2) (2013).Google Scholar
Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Gurudev Dutt, M.V., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D., Nature 455, 644 (2008).Google Scholar
Grotz, B., Hauf, M.V., Dankerl, M., Naydenov, B., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., Garrido, J.A., Nat. Commun. 3, 729 (2012).Google Scholar
Hauf, M.V., Grotz, B., Naydenov, B., Dankerl, M., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., Garrido, J.A., Phys. Rev. B 83, 081304 (2011).Google Scholar
Song, K.-S., Zhang, G.-J., Nakamura, Y., Furukawa, K., Hiraki, T., Yang, J.-H., Funatsu, T., Ohdomari, I., Kawarada, H., Phys. Rev. E 74, 041919 (2006).Google Scholar
Hauf, M.V., Hess, L.H., Howgate, J., Dankerl, M., Stutzmann, M., Garrido, J.A., Appl. Phys. Lett. 97, 093504 (2010).Google Scholar
Garrido, J.A., in CVD Diamond for Electronic Devices and Sensors, Sussmann, R.S., Ed. (Wiley, Chichester UK, 2009).Google Scholar
Garrido, J.A., Hardl, A., Kuch, S., Stutzmann, M., Williams, O., Jackmann, R., Appl. Phys. Lett. 86, 073504 (2005).Google Scholar
Dankerl, M., Reitinger, A., Stutzmann, M., Garrido, J.A., Phys. Status Solidi RRL 2, 31 (2008).CrossRefGoogle Scholar
Hartl, A., Garrido, J.A., Nowy, S., Zimmermann, R., Werner, C., Horinek, D., Netz, R., Stutzmann, M., J. Am. Chem. Soc. 129, 1287 (2007).Google Scholar
Hartl, A., Baur, B., Stutzmann, M., Garrido, J.A., Langmuir 24, 9898 (2008).Google Scholar
Kuga, S., Yang, J.H., Takahashi, H., Hirama, K., Iwasaki, T., Kawarada, H., J. Am. Chem. Soc. 130, 13251 (2008).Google Scholar
Kawarada, H., Ruslinda, A.R., Phys. Status Solidi A 208, 2005 (2011).CrossRefGoogle Scholar
Dankerl, M., Eick, S., Hofmann, B., Hauf, M., Ingebrandt, S., Offenhäusser, A., Stutzmann, M., Garrido, J.A., Adv. Funct. Mater. 19, 2915 (2009).Google Scholar