Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T02:33:32.379Z Has data issue: false hasContentIssue false

Diamond electron emission

Published online by Cambridge University Press:  12 June 2014

I-Nan Lin
Affiliation:
Department of Physics, Tamkang University, Taiwan; inanlin@mail.tku.edu.tw
Satoshi Koizumi
Affiliation:
National Institute for Materials Science, Japan; koizumi.satoshi@nims.go.jp
Joan Yater
Affiliation:
Naval Research Laboratory, Washington, DC, USA; joan.yater@nrl.navy.mil
Franz Koeck
Affiliation:
Department of Physics, Arizona State University, USA; franz.koeck@asu.edu
Get access

Abstract

Diamond films with good electron emission properties show great potential for applications such as electron sources. For single-crystalline diamond, the negative electron affinity at hydrogen-terminated surfaces enables efficient emission of conduction electrons into vacuum. Although electrons are not naturally present in the diamond conduction band, p–n junction diode structures make this possible; electrons are injected from n-type diamond to the conduction band of p-type diamond, giving rise to electron emission with efficiencies exceeding 1%. Alternatively, impacting electron beams can be used to inject “secondary” electrons into the conduction band, resulting in high emission gain. For ultrananocrystalline diamond (UNCD) films with versatile granular structure, enhanced electron field emission (EFE) properties can be achieved by altering the granular structure of the films. Utilization of nanoscale tips as templates for growing UNCD film or direct reactive ion etching of the film further enhances their EFE behavior. On the other hand, the release of electrons through application of thermal energy can be utilized in a thermionic energy converter to directly transform heat into electricity. With the addition of ion current from doped diamond emitters to the thermionic electron current, power output enhancement of the converter can be realized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Himpsel, F.J., Knapp, J.A., van Vechten, J.A., Eastman, D.E., Phys. Rev. B: Condens. Matter 20, 624 (1979).CrossRefGoogle Scholar
Walker, J., Rep. Prog. Phys. 42, 1605 (1979).Google Scholar
Goodwin, D.G., Butler, J.E., in Handbook of Industrial Diamonds and Diamond Films, Prelas, M.A., Popovici, G., Bigelow, L.K., Eds. (Marcel Dekker, New York, 1998).Google Scholar
Celii, F.G., Butler, J.E., Annu. Rev. Phys. Chem. 42, 643 (1991).CrossRefGoogle Scholar
Krauss, A.R., Auciello, O., Gruen, D.M., Jayatissa, A., Sumant, A., Tucek, J., Mancini, D.C., Moldovan, N., Erdemir, A., Ersoy, D., Gardos, M.N., Busmann, H.G., Meyer, E.M., Ding, M.Q., Diam. Relat. Mater. 10, 1952 (2001).Google Scholar
Williams, O.A., Daenen, M., D’Haen, J., Haenen, K., Maes, J., Moshchalkov, V.V., Nesládek, M., Gruen, D.M., Diam. Relat. Mater. 15, 654 (2006).Google Scholar
Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A.R., Auciello, O., J. Appl. Phys. 90, 118 (2001).Google Scholar
Correa, E.J., Wu, Y., Wen, J.-G., Chandrasekharan, R., Shannon, M.A., J. Appl. Phys. 102, 113706 (2007).Google Scholar
Takeuchi, D., Ogura, M., Ri, S.-G., Kato, H., Okushi, H., Yamasaki, S., Diamond Relat. Mater. 17, 986 (2008).Google Scholar
Yamada, T., Hasegawa, M., Kudo, Y., Masuzawa, T., Okano, K., Nebel, C.E., Proc. 24th Int’l Vacuum Nanoelectronics Conf. 125 (2011).Google Scholar
Koizumi, S., Watanabe, K., Hasegawa, M., Kanda, H., Science 292, 1899 (2001).CrossRefGoogle Scholar
Geis, M.W., Efremow, N.N., Woodhouse, J.D., McAleese, M.D., Marchywka, M., Socker, D.G., Hochedez, J.F., IEEE Electron Device Lett. 12 (8), 456 (1991).Google Scholar
Brandes, G.R., Beetz, C.P., Feger, C.A., Wright, R.L., Diam. Relat. Mater. 4, 586 (1995).Google Scholar
Koizumi, S., Ono, T., Sakai, T., Extended abstract of the 20th Diamond Symposium, New Diamond Forum, Tokyo, 262 (2006) [in Japanese].Google Scholar
Koizumi, S., Kono, S., Proc. 16th Int. Display Workshops 1479 (2009).Google Scholar
Takeuchi, D., Koizumi, S., Makino, T., Kato, H., Ogura, M., Ohashi, H., Okushi, H., Yamasaki, S., Phys. Status Solidi A 210 (10), 1961 (2013).Google Scholar
Kono, S., Koizumi, S., e-J. Surf. Sci. Nanotechnol. 7, 660 (2009).CrossRefGoogle Scholar
Bandis, C., Pate, B.B., Phys. Rev. Lett. 74, 777 (1995).CrossRefGoogle Scholar
Cui, J.B., Ristein, J., Ley, L., Phys. Rev. Lett. 81, 429 (1998).Google Scholar
Diederich, L., Aebi, P., Kuttel, O.M., Schlapbach, L., Surf. Sci. 424, L314 (1999).Google Scholar
Jenkins, R.O., Trodden, W.G., Electron and Ion Emission (Dover, New York, 1965), p. 54.Google Scholar
Yater, J.E., Shaw, J.L., Jensen, K.L., Feygelson, T., Myers, R.E., Pate, B.B., Butler, J.E., Diam. Relat. Mater. 20, 798 (2011).CrossRefGoogle Scholar
Klein, C.A., J. Appl. Phys. 39, 2029 (1968).CrossRefGoogle Scholar
Jensen, K.L., Yater, J.E., Shaw, J.L., Myers, R.E., Pate, B.B., Butler, J.E., Feygelson, T., J. Appl. Phys. 108, 044509 (2010).Google Scholar
Yater, J.E., Shih, A., J. Appl. Phys. 87, 8103 (2000).CrossRefGoogle Scholar
Shih, A., Yater, J., Pehrsson, P., Butler, J., Hor, C., Abrams, R., J. Appl. Phys. 82, 1860 (1997).Google Scholar
Thoms, B.D., Pehrsson, P.E., Butler, J.E., J. Appl. Phys. 75, 1804 (1994).Google Scholar
Mearini, G.T., Krainsky, I.L., Wang, Y.X., Dayton, J.A. Jr., Ramesham, R., Rose, M.F., Thin Solid Films 253, 151 (1994).CrossRefGoogle Scholar
Hopman, H.J., Verhoeven, J., Bachmann, P.K., Wilson, H., Kroon, R., Diam. Relat. Mater. 8, 1033 (1999).Google Scholar
O’Donnell, K.M., Edmonds, M.T., Ristein, J., Tadich, A., Thomsen, L., Wu, Q., Pakes, C.I., Ley, L., Adv. Funct. Mater. 23, 5608 (2013).CrossRefGoogle Scholar
Chang, X., Wu, Q., Ben-Zvi, I., Burrill, A., Kewisch, J., Rao, T., Smedley, J., Wang, E., Muller, E.M., Busby, R., Dimitrov, D., Phys. Rev. Lett. 105, 164801 (2010).Google Scholar
Hu, X.J., Ye, J.S., Liu, H.J., Shen, Y.G., Chen, X.H., Hu, H., J. Appl. Phys. 109, 053524 (2011).Google Scholar
Hu, X.J., Ye, J.S., Hu, H., Chen, X.H., Shen, Y.G., Appl. Phys. Lett. 99, 131902 (2011).CrossRefGoogle Scholar
Joseph, P.T, Tai, N.H., Lee, C.-Y., Niu, H., Pong, W.F., Lin, I.N., J. Appl. Phys. 103 (4), 043720 (2008).Google Scholar
Sankaran, K.J., Panda, K., Sundaravel, B., Tai, N.H., Lin, I.N., J. Appl. Phys. 115, 063701 (2014).Google Scholar
Panda, K., Sundaravel, B., Panigrahi, B.K., Magudapathy, P., Krishna, D.N., Nair, K.G.M., Chen, H.C., Lin, I.N., J. Appl. Phys. 110, 044304 (2011).CrossRefGoogle Scholar
Chen, S.S., Chen, H.C., Wang, W.C., Lee, C.Y., Lin, I.N., Guo, J., Chang, C.L., J. Appl. Phys. 113, 113704 (2013).CrossRefGoogle Scholar
Chen, H.C., Teng, K.Y., Tang, C.Y., Sundaravel, B., Amirthapandian, S., Lin, I.N., J. Appl. Phys. 108, 123712 (2010).Google Scholar
Sankaran, K.J., Chen, H.C., Sundaravel, B., Lee, C.Y., Tai, N.H., Lin, I.N., Appl. Phys. Lett. 102, 061604 (2013).Google Scholar
Arenal, R., Bruno, P., Miller, D.J., Bleuel, M., Lal, J., Gruen, D.M., Phys. Rev. B: Condens. Matter 75, 195431 (2007).Google Scholar
Lin, Y.C., Sankaran, K.J., Chen, Y.C., Lee, C.Y., Chen, H.C., Lin, I.N., Tai, N.H., Diam. Relat. Mater. 20, 191 (2011).Google Scholar
Sankaran, K.J., Kurian, J., Chen, H.C., Dong, C.L., Lee, C.Y., Tai, N.H., Lin, I.N., J. Phys. D: Appl. Phys. 45, 365303 (2012).Google Scholar
Cheng, H.F., Chiang, H.Y., Horng, C.C., Chen, H.C., Wang, C.S., Lin, I.N., J. Appl. Phys. 109, 033711 (2011).Google Scholar
Wang, C.S., Chen, H.C., Cheng, H.F., Lin, I.N., J. Appl. Phys. 105, 124311 (2009).CrossRefGoogle Scholar
Panda, K., Chen, H.C., Sundaravel, B., Panigrahi, B.K., Lin, I.N., J. Appl. Phys. 113, 054311 (2013).CrossRefGoogle Scholar
Tzeng, Y.F., Lee, Y.C., Lee, C.Y., Lin, I.N., Chiu, H.T., Appl. Phys. Lett. 91 (6), 063117 (2007).Google Scholar
Tzeng, Y.F., Liu, K.H., Lee, Y.C., Lin, S.J., Lin, I.N., Lee, C.Y., Chiu, H.T., Nanotechnology 18 (43), 435703 (2007).Google Scholar
Chang, T.H., Lou, S.C., Chen, H.C., Chen, C., Lee, C.Y., Tai, N.H., Lin, I.N., Nanoscale 5, 7467 (2013).CrossRefGoogle Scholar
Sankaran, K.J., Kunuku, S., Lou, S.C., Kurian, J., Chen, H.C., Lee, C.Y., Tai, N.H., Leou, K.C., Chen, C., Lin, K.I.N., Nanoscale Res. Lett. 7, 522 (2012).Google Scholar
Sankaran, K.J., Srinivasu, K., Leou, K.C., Tai, N.H., Lin, I.N., Appl. Phys. Lett. 103, 251601 (2013).Google Scholar
Sankaran, K.J., Tai, N.H., Lin, I.N., Appl. Phys. Lett. 104, 031601 (2014).Google Scholar
Sim, H.S., Lau, S.P., Yang, H.Y., Ang, L.K., Tanemura, M., Yamaguchi, K., Appl. Phys. Lett. 90, 143103 (2007).Google Scholar
Arif, M., Heo, K., Lee, B.Y., Lee, J., Seo, D.H., Seo, S., Jian, J., Hong, S., Nanotechnology 22, 355709 (2011).CrossRefGoogle Scholar
Yuan, L., Tao, Y., Chen, J., Dai, J., Song, T., Ruan, M., Ma, Z., Gong, L., Liu, K., Zhang, X., Hu, X., Zhou, J., Wang, Z.L., Adv. Funct. Mater. 21, 2150 (2011).Google Scholar
Verma, V.P., Das, S., Lahiri, I., Choi, W., Appl. Phys. Lett. 96, 203108 (2010).Google Scholar
Uppireddi, K., Westover, T.L., Fisher, T.S., Weiner, B.R., Morell, G., J. Appl. Phys. 106, 043716 (2009).Google Scholar
Paxton, W.F., Howell, M., Kang, W.P., Davidson, J.L., J. Vac. Sci. Technol. B 30 (2), 021202 (2012).Google Scholar
Koeck, F.A.M., Nemanich, R.J., Diam. Relat. Mater. 18, 232 (2009).CrossRefGoogle Scholar
Koeck, F.A.M., Nemanich, R.J., J. Appl. Phys. 112, 113707 (2012).Google Scholar
Suzuki, M., Ono, T., Sakuma, N., Sakai, T., Diam. Relat. Mater. 18, 1274 (2009).Google Scholar
Diedrich, L., Kuttel, O.M., Aebi, P., Schlapbach, L., Surf. Sci. 418, 219 (1998).CrossRefGoogle Scholar
Kataoka, M., Zhu, C., Koeck, F.A.M., Nemanich, R.J., Diam. Relat. Mater. 19, 110 (2010).Google Scholar
Robinson, V.S., Show, Y., Swain, G.M., Reifenberger, R.G., Fisher, T.S., Diam. Relat. Mater. 15, 1601 (2006).Google Scholar
Koeck, F.A.M., Nemanich, R.J., Diam. Relat. Mater. 14, 2051 (2005).CrossRefGoogle Scholar
Koeck, F.A.M., Nemanich, R.J., Lazea, A., Haenen, K., Diam. Relat. Mater. 18, 789 (2009).CrossRefGoogle Scholar
Wurz, P., Schletti, R., Aellig, M.R., Surf. Sci. 373, 56 (1997).Google Scholar
Scheer, J.A., Wieser, M., Wurz, P., Bochsler, P., Hertzberg, E., Fuselier, S.A., Koeck, F.A., Nemanich, R.J., Schleberger, M., Nucl. Instrum. Methods Phys. Res. B 230, 330 (2005).Google Scholar
Dresser, M.J., J. Appl. Phys. 39, 338 (1968).Google Scholar
Scheer, J.A., Wieser, M., Wurz, P., Bochsler, P., Hertzberg, E., Fuselier, S.A., Koeck, F.A., Nemanich, R.J., Schleberger, M., Adv. Space Res. 38, 664 (2006).Google Scholar
Hatsopoulos, G.N., Gyftopoulos, E.P., Thermionic Energy Conversion (MIT Press, Cambridge, MA, 1973).Google Scholar
Houston, J.M., J. Appl. Phys. 30, 481 (1959).CrossRefGoogle Scholar
Koeck, F.A.M., Garguilo, J.M., Nemanich, R.J., Diam. Relat. Mater. 13, 2052 (2004).Google Scholar
Koeck, F.A.M., Nemanich, R.J., Balasubramaniam, Y., Haenen, K., Sharp, J., Diam. Relat. Mater. 20, 1229 (2011).Google Scholar
Shin, S.H., Fisher, T.S., Walker, D.G., Strauss, A.M., Kang, W.P., Davidson, J.L., J. Vac. Sci. Technol. B 21, 1 (2003).Google Scholar
Fisher, T.S., Appl. Phys. Lett. 79, 3699 (2001).Google Scholar
Paxton, W.F., Wisitsoraat, A., Raina, S., Davidson, J.L., Kang, W.P., 23rd International Vacuum Nanoelectronics Conference (IVNC), 149 (2010).Google Scholar
Koeck, F.A.M., Nemanich, R.J., Sharp, J., 26th International Vacuum Nanoelectronics Conference (IVNC) 1, 3 (2013).Google Scholar