Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T18:57:16.522Z Has data issue: false hasContentIssue false

Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

As the size scale of device features becomes ever smaller, conventional lithographic processes become increasingly more difficult and expensive, especially at a minimum feature size of less than 45 nm. Consequently, to achieve higher-density circuits, storage devices, or displays, it is evident that alternative routes need to be developed to circumvent both cost and manufacturing issues.

An ideal process would be compatible with existing technological processes and manufacturing techniques; these strategies, together with novel materials, could allow significant advances to be made in meeting both short-term and long-term demands for higher-density, faster devices. The self-assembly of block copolymers (BCPs), two polymer chains covalently linked together at one end, provides a robust solution to these challenges. As thin films, immiscible BCPs self-assemble into a range of highly ordered morphologies where the size scale of the features is only limited by the size of the polymer chains and are, therefore, nanoscopic.

While self-assembly alone is sufficient for a number of applications in fabricating advanced microelectronics, directed, self-orienting, self-assembly processes are also required to produce complex devices with the required density and addressability of elements to meet future demands. Both strategies require the design and synthesis of polymers that have well-defined characteristics such that the necessary fine control over the morphology, interfacial properties, and simplicity of processes can be realized. By combining tailored self-assembly processes (a “bottom-up” approach) with microfabrication processes (a “top-down” approach), the ever-present thirst of the consumer for faster, better, and cheaper devices can be met in very simple, yet robust, ways. The integration of novel chemistries with the manipulation of self-assembly will be treated in this article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Segalman, R.A., Mater. Sci. Eng. R48 (6) (2005) p. 191.CrossRefGoogle Scholar
2.Krausch, G., Mater. Sci. Eng. R14 (1) (1995) p. 1.Google Scholar
3.Hashimoto, T., Shibayma, M., Fujimura, M., and Kawai, H., in Block Copolymers, Science and Technology, edited by D.J., Meier (Harwood Academic, London, 1983) p. 63.Google Scholar
4.Bates, F.S. and Fredrickson, G.H., Annu. Rev. Phys. Chem. 41 (1990) p. 525.CrossRefGoogle Scholar
5.Fredrickson, G.H. and Bates, F.S., Annu. Rev. Mater. Sci. (1995) p. 1.Google Scholar
6.Hamley, I.W., The Physics of Block Copolymers (Oxford University Press, New York, 1998) p. 125.CrossRefGoogle Scholar
7.Coulon, G., Deline, V.R., Miller, D.C., and Russell, T.P., Macromolecules 22 (1989) p. 4600.CrossRefGoogle Scholar
8.Coulon, G., Russell, T.P., Deline, V.R., and Green, P.F., Macromolecules 22 (6) (1989) p. 2581.CrossRefGoogle Scholar
9.Anastasiadis, S.H., Russell, T.P., Satija, S.K., and Majkrzak, C.F., Phys. Rev. Lett. 62 (16) (1989) p. 1852.CrossRefGoogle Scholar
10.Amundson, K., Helfand, E., Davis, D.D., Quan, X., Patel, S.S., and Smith, S.D., Macromolecules 24 (24) (1991) p. 6546.CrossRefGoogle Scholar
11.Amundson, K., Helfand, E., and Quan, X., Abstracts of Papers of the Am. Chem. Soc. 204 (1992) p. 164-POLY.Google Scholar
12.Amundson, K., Helfand, E., Quan, X., and Smith, S.D., Macromolecules 26 (11) (1993) p. 2698.CrossRefGoogle Scholar
13.Amundson, K., Helfand, E., Quan, X.N., Hudson, S.D., and Smith, S.D., Macromolecules 27 (22) (1994) p. 6559.CrossRefGoogle Scholar
14.Mansky, P., DeRouchey, J., Russell, T.P., Mays, J., Pitsikalis, M., Morkved, T., and Jaeger, H., Macromolecules 31 (13) (1998) p. 4399.CrossRefGoogle Scholar
15.Morkved, T.L., Lu, M., Urbas, A.M., Ehrichs, E.E., Mansky, H.M., and Green, P.F., Science 273 (1996) p. 931.CrossRefGoogle Scholar
16.Thurn-Albrecht, T., DeRouchey, J., Russell, T.P., and Jaeger, H.M., Macromolecules 33 (9) (2003) p. 3250.CrossRefGoogle Scholar
17.Xu, T., Zhu, Y.Q., Gido, S.P., Green, P.F., Macromolecules 37 (2004) p. 2625.CrossRefGoogle Scholar
18.Boker, A., Elbs, H., Hansel, H., Knoll, A., Ludwigs, S., Zettl, H., Urban, V., Abetz, V., Muller, A.H.E., and Krausch, G., Phys. Rev. Lett. 89 133502(2002).CrossRefGoogle Scholar
19.Boker, A., Elbs, H., Hansel, H., Knoll, A., Ludwigs, S., Zettl, H., Zvelindovsky, A.V., Sevink, G.J.A., Urban, V., Abetz, V., Muller, A.H.E., and Krausch, G., Macromolecules 36 (21) (2003) p. 8078.CrossRefGoogle Scholar
20.Boker, A., Knoll, A., Elbs, H., Abetz, V., Muller, A.H.E., and Krausch, G., Macromolecules 35 (4) (2002) p. 1319.CrossRefGoogle Scholar
21.Kim, G. and Libera, M., Macromolecules 31 (8) (1998) p. 2569.CrossRefGoogle Scholar
22.Kim, G. and Libera, M., Macromolecules 31 (8) (1998) p. 2670.CrossRefGoogle Scholar
23.Kim, S.H., Misner, M.J., Kimura, M., Xu, T., and Green, P.F., Adv. Mater. 16 (3) (2004) p. 226.CrossRefGoogle Scholar
24.Kim, S.H., Misner, M.J., and Green, P.F., Adv. Mater. 16 (2004) p. 2119.CrossRefGoogle Scholar
25.Lin, Z.Q., Kim, D.H., Wu, X.D., Boosahda, L., Stone, D., LaRose, L., and Green, P.F., Adv. Mater. 14 (19) (2002) p. 1373.3.0.CO;2-F>CrossRefGoogle Scholar
26.Mansky, P., Liu, Y., Huang, E., Russell, T.P., and Hawker, C.J., Science 275 (1997) p. 1458.CrossRefGoogle Scholar
27.Huang, E., Russell, T.P., Harrison, C., Chaikin, P.M., Register, R.A., Hawker, C.J., and Mays, J., Macromolecules 31 (1998) p. 7641.CrossRefGoogle Scholar
28.Muthukumar, M., Ober, C.K., and Thomas, E.L., Science 277 (1997) p. 1225.CrossRefGoogle Scholar
29.Turner, M.S., Phys. Rev. Lett. 69 (12) (1992) p. 1788.CrossRefGoogle Scholar
30.Walton, D.G., Kellogg, G.J., Mayes, A.M., Lambooy, P., and Green, P.F., Macromolecules 27 (21) (1994) p. 6225.CrossRefGoogle Scholar
31.Matyjaszewski, K. and Xia, J., Chem. Rev. 101 (2001) p. 2921.CrossRefGoogle Scholar
32.Hawker, C.J., Bosman, A.W., and Harth, E., Chem. Rev. 101 (2001) p. 3661.CrossRefGoogle Scholar
33.Monteiro, M., J. Polym. Sci., Part A: Polym. Chem. 43 (2005) p. 3189.CrossRefGoogle Scholar
34.Benoit, D., Chaplinski, V., Braslau, R., and Hawker, C.J., J. Am. Chem. Soc. 121 (1999) p. 3904.CrossRefGoogle Scholar
35.Drockenmuller, E., Li, L.Y.T., Ryu, D.Y., Harth, E., Russell, T.P., Kim, H.C., and Hawker, C.J., J. Polym. Sci., Part A: Polym. Chem. 43 (2005) p. 1028.CrossRefGoogle Scholar
36.Blomberg, S., Ostberg, S., Harth, E., Bosman, A.W., Horn, B.V., and Hawker, C.J., J. Polym. Sci., Part A: Polym. Chem. 40 (2002) p. 1309.CrossRefGoogle Scholar
37.Monge, S., Darcos, V., and Haddleton, D.M., J. Polym. Sci., Part A: Polym. Chem. 42 (2004) p. 6299.CrossRefGoogle Scholar
38.Huang, J., Pintauer, T., and Matyjaszewski, K., J. Polym. Chem., Part A: Polym. Chem. 42 (2004) p. 3285.CrossRefGoogle Scholar
39.Hawker, C.J. and Wooley, K.L., Science 309 (2005) p. 1200.CrossRefGoogle Scholar
40.Mansky, P., Harrison, C.K., Chaikin, P.M., Register, R.A., and Yao, N., Appl. Phys. Lett. 68 (18) (1996) p. 2586.CrossRefGoogle Scholar
41.Park, M., Harrison, C., Chaikin, P.M., Register, R.A., and Adamson, D.H., Science 276 (1997) p. 1401.CrossRefGoogle Scholar
42.Heier, J., Kramer, E.J., Walheim, S., and Krausch, G., Macromolecules 30 (21) (1997) p. 6610.CrossRefGoogle Scholar
43.Russell, T.P., Huang, E., and Rockford, L., in Encyclopedia of Materials: Science and Technology, edited by T.P., Lodge (Elsevier Science Ltd., London, 2001) p. 676.CrossRefGoogle Scholar
44.Kim, H.C. and Green, P.F., J. Polym. Sci. Part B: Polym. Phys. 39 (6) (2001) p. 663.3.0.CO;2-K>CrossRefGoogle Scholar
45.Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., and Nuzzo, R.G., J. Am. Chem. Soc. 113 (19) (1991) p. 7152.CrossRefGoogle Scholar
46.Troughton, E.B., Bain, C.D., Whitesides, G.M., Nuzzo, R.G., Allara, D.L., and Porter, M.D., Langmuir 4 (2) (1988) p. 365.CrossRefGoogle Scholar
47.Fadeev, A.Y. and McCarthy, T.J., Langmuir 16 (18) (2000) p. 7268.CrossRefGoogle Scholar
48.Netzer, L. and Sagiv, J., J. Am. Chem. Soc. 105 (3) (1983) p. 674.CrossRefGoogle Scholar
49.Ryu, D.Y., Shin, K., Drockenmuller, E., Hawker, C.J., and Russell, T.P., Science 308 (2005) p. 236.CrossRefGoogle Scholar
50.Fasolka, M.J., Harris, D.J., Mayes, A.M., Yoon, M., and Mochrie, S.G.J., Phys. Rev. Lett. 79 (16) (1997) p. 3018.CrossRefGoogle Scholar
51.Sivaniah, E., Hayashi, Y., Matsubara, S., Kiyono, S., Hashimoto, T., Fukunaga, K., Kramer, E.J., and Mates, T., Macromolecules 38 (5) (2005) p. 1837.CrossRefGoogle Scholar
52.Jeong, U., Ryu, D.Y., Kho, D.H., Kim, J.K., Goldbach, J.T., Kim, D.H., and Green, P.F., Adv. Mater. 16 (6) (2004) p. 533.CrossRefGoogle Scholar
53.Fukunaga, K., Elbs, H., Magerle, R., and Krausch, G., Macromolecules 33 (2000) p. 947.CrossRefGoogle Scholar
54.Ludwigs, S., Boker, A., Voronov, A., and Krausch, G., Nature Mater. 2 (2003) p. 744.CrossRefGoogle Scholar
55.Du, P., Li, M.Q., Douki, K., Li, X.F., Garcia, C.R.W., Jain, A., Smilgies, D.M., Fetters, L.J., Gruner, S.M., Wiesner, U., and Ober, C.K., Adv. Mater. 16 (12) (2004) p. 953.CrossRefGoogle Scholar
56.Li, M.Q., Douki, K., Goto, K., Li, X.F., Coenjarts, C., Smilgies, D.M., and Ober, C.K., Chem. Mater. 16 (20) (2004) p. 3800.CrossRefGoogle Scholar
57.Harrison, C., Cheng, Z.D., Sethuraman, S., Huse, D.A., Chaikin, P.M., Vega, D.A., Sebastian, J.M., Register, R.A., and Adamson, D.H., Phys. Rev. E 66 (1) (2002).CrossRefGoogle Scholar
58.Harrison, C., Angelescu, D.E., Trawick, M., Cheng, Z.D., Huse, D.A., Chaikin, P.M., Vega, D.A., Sebastian, J.M., Register, R.A., and Adamson, D.H., Europhys. Lett. 67 (5) (2004) p. 800.CrossRefGoogle Scholar
59.Vega, D.A., Harrison, C.K., Angelescu, D.E., Trawick, M.L., Huse, D.A., Chaikin, P.M., and Register, R.A., Phys. Rev. E 71 (6) (2005).CrossRefGoogle Scholar
60.Segalman, R.A., Yokoyama, H., and Kramer, E.J., Adv. Mater. 13 (15) (2001) p. 1152.3.0.CO;2-5>CrossRefGoogle Scholar
61.Segalman, R.A., Schaefer, K.E., Fredrickson, G.H., Kramer, E.J., and Magonov, S., Macromolecules 36 (12) (2003) p. 4498.CrossRefGoogle Scholar
62.Segalman, R.A., Hexemer, A., Hayward, R.C., and Kramer, E.J., Macromolecules 36 (9) (2003) p. 3272.CrossRefGoogle Scholar
63.De Rosa, C., Park, C., Thomas, E.L., and Lotz, B., Nature 405 (2000) p. 433.CrossRefGoogle Scholar
64.Cheng, J.Y., Ross, C.A., Thomas, E.L., Smith, H.I., and Vancso, G.J., Appl. Phys. Lett. 81 (19) (2002) p. 3657.CrossRefGoogle Scholar
65.Cheng, J.Y., Ross, C.A., Thomas, E.L., Smith, H.I., and Vancso, G.J., Adv. Mater. 15 (19) (2003) p. 1599.CrossRefGoogle Scholar
66.Cheng, J.Y., Mayes, A.M., and Ross, C.A., Nature Mater. 3 (2004) p. 823.CrossRefGoogle Scholar
67.Sundrani, D., Darling, S.B., and Sibener, S.J., Langmuir 20 (12) (2004) p. 5091.CrossRefGoogle Scholar
68.Sundrani, D., Darling, S.B., and Sibener, S.J., Nano Lett. 4 (2) (2004) p. 273.CrossRefGoogle Scholar
69.Angelescu, D.E., Waller, J.H., Adamson, D.H., Deshpande, P., Chou, S.Y., Register, R.A., and Chaikin, P.M., Adv. Mater. 16 (19) (2004) p. 1736.CrossRefGoogle Scholar
70.Pelletier, V., Angelescu, D., Waller, J., Adamson, D., Register, R., and Chaikin, P., Bull. Am. Phys. Soc. 49 (2004) p. 1277.Google Scholar
71.Kimura, M., Misner, M.J., Xu, T., Kim, S.H., and Green, P.F., Langmuir 19 (2003) p. 9910.CrossRefGoogle Scholar
72.Rockford, L., Liu, Y., Mansky, P., Russell, T.P., Yoon, M., and Mochrie, S.G.J., Phys. Rev. Lett. 82 (12) (1999) p. 2602.CrossRefGoogle Scholar
73.Rockford, L., Mochrie, S.G.J., and Green, P.F., Macromolecules 34 (2001) p. 1487.CrossRefGoogle Scholar
74.Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J., and Nealey, P.F., Nature 424 (2003) p. 411.CrossRefGoogle Scholar
75.Stoykovich, M.P., Muller, M., Kim, S.O., Solak, H.H., Edwards, E.W., de Pablo, J.J., and Nealey, P.F., Science 308 (2005) p. 1442.CrossRefGoogle Scholar
76.Spatz, J.P., Roescher, A., Sheiko, S., Krausch, G., and Moller, M., Adv. Mater. 7 (8) (1995) p. 731.CrossRefGoogle Scholar
77.Ding, J. and Liu, G., J. Phys. Chem. 102 (31) (1998) p. 6107.CrossRefGoogle Scholar
78.Ding, J., Liu, G., and Hairy, P., Chem. Mater. 10 (2) (1998) p. 537.CrossRefGoogle Scholar
79.Liu, G., Colloid & Interface Sci. 3 (1998) p. 200.Google Scholar
80.Xu, T., Goldbach, J.T., Misner, M.J., Kim, S.H., Russell, T.P., Gibaud, A., Gang, O., Ocko, B., Guarini, K.W., Black, C.T., and Hawker, C.J., Macromolecules 37 (2004) p. 2972.CrossRefGoogle Scholar
81.Temple, K., Kulbaba, K., Power-Billard, K.N., Manners, I., Leach, K.A., Xu, T., Russell, T.P., and Hawker, C.J., Adv. Mater. 15 (4) (2003) p. 297.CrossRefGoogle Scholar
82.Labadie, J.W., Hedrick, J.L., Wakharkar, V., Hofer, D.C., and Green, P.F., IEEE Trans. Components Hybrids and Manufacturing Technology 15 (6) (1992) p. 925.CrossRefGoogle Scholar
83.Leiston-Belanger, J.M., Russell, T.P., Drockenmuller, E., and Hawker, C.J., Macromolecules 38 (2005) p. 7676.CrossRefGoogle Scholar
84.Drockenmuller, E., Li, L.T.T., Ryu, D.Y., Harth, E., Russell, T.P., Kim, H.-C., and Hawker, C.J., “Covalent Stabilization of Nanostructures: Robust Block Copolymer Templates from Novel Thermo-Reactive Systems,” Adv. Mater. (2006) accepted for publication.CrossRefGoogle Scholar
85.Ikkala, O. and Brinke, G.T., Science 295 (2002) p. 2407.CrossRefGoogle Scholar
86.Ruokolainen, J., Makinen, R., Torkkeli, M., Makela, T., Serimaa, R., Brinke, G.T., and Ikkala, O., Science 280 (1998) p. 557.CrossRefGoogle Scholar
87.Valkama, S., Ruotsalainen, T., Kosonen, H., Ruokolainen, J., Torkkeli, M., Seriumaa, R., Brinke, G.T., and Ikkala, O., Macromolecules 36 (11) (2003) p. 3986.CrossRefGoogle Scholar
88.Fan, H.Y. and Brinker, J., in Mesoporous Crystals and Related Nano-Structured Materials, 148, edited by Osamu, Terasaki (Elsevier, Amsterdam, 2004) p. 213.CrossRefGoogle Scholar
89.Yang, P.D., Deng, T., Zhao, D.Y., Feng, P.Y., Pine, D., Chmelka, B.F., Whitesides, G.M., and Stucky, G.D., Science 282 (1998) p. 2244.CrossRefGoogle Scholar
90.Yang, P.D., Wirnsberger, G., Huang, H.C., Cordero, S.R., McGehee, M.D., Scott, B., Deng, T., Whitesides, G.M., Chmelka, B.F., Buratto, S.K., and Stucky, G.D., Science 287 (2000) p. 465.CrossRefGoogle Scholar
91.Maekawa, H., Esquena, J., Bishop, S., Solans, C., and Chmelka, B.F., Adv. Mater. 15 (7–8) (2003) p. 591.CrossRefGoogle Scholar
92.Williams, S.R., Maynard, H.D., and Chmelka, B.F., J. Labelled Comp. Radiopharm. 42 (10) (1999) p. 927.3.0.CO;2-J>CrossRefGoogle Scholar
93.Finnefrock, A.C., Ulrich, R., Toombes, G.E.S., Gruner, S.M., and Wiesner, U., J. Am. Chem. Soc. 125 (43) (2003) p. 13084.CrossRefGoogle Scholar
94.Garcia, C., Zhang, Y.M., DiSalvo, F., and Wiesner, U., Angewandte Chemie, Intl. Ed. 42 (13) (2003) p. 1526.CrossRefGoogle Scholar
95.Renker, S., Mahajan, S., Babski, D.T., Schnell, I., Jain, A., Gutmann, J., Zhang, Y.M., Gruner, S.M., Spiess, H.W., and Wiesner, U., Macromol. Chem. Phys. 205 (8) (2004) p. 1021.CrossRefGoogle Scholar
96.Schumacher, K., von Hohenesche, C.D., Unger, K.K., Ulrich, R., Du Chesne, A., Wiesner, U., and Spiess, H.W., Adv. Mater. 11 (14) (1999) p. 1194.3.0.CO;2-U>CrossRefGoogle Scholar
97.Mao, H.M. and Hillmyer, M.A., Macromolecules 38 (9) (2005) p. 4038.CrossRefGoogle Scholar
98.Rzayev, J. and Hillmyer, M.A., Macromolecules 38 (1) (2005) p. 3.CrossRefGoogle Scholar
99.Pai, R.A., Humayun, R., Schulberg, M.T., Sengupta, A., Sun, J.N., and Watkins, J.J., Science 303 (2004) p. 507.CrossRefGoogle Scholar
100.Vogt, B.D., Pai, R.A., Lee, H.J., Hedden, R.C., Soles, C.L., Wu, W.L., Lin, E.K., Bauer, B.J., and Watkins, J.J., Chem. Mater. 17 (6) (2005) p. 1398.CrossRefGoogle Scholar
101.Black, C.T., Guarini, K.W., Milkove, K.R., Baker, S.M., Russell, T.P., and Tuominen, M.T., Appl. Phys. Lett. 79 (3) (2001) p. 409.CrossRefGoogle Scholar
102.Guarini, K.W., Black, C.T., Milkove, K.R., and Sandstrom, R.L., J. Vac. Sci. & Tech. B 19 (6) (2001) p. 2784.CrossRefGoogle Scholar
103.Asakawa, K. and Hiraoka, T., Jap. J. Appl. Phys. Pt. 1 41 (10) (2002) p. 6112.CrossRefGoogle Scholar
104.Liu, K., Baker, S.M., Schuller, I.K., Tuominen, M., and Green, P.F., Phys. Rev. B 6305 (6) (2001) p. 403.Google Scholar
105.Naito, K., Hieda, H., Sakurai, M., Kamata, Y., and Asakawa, K., IEEE Trans. on Magnetics 38 (5) (2002) p. 1949.CrossRefGoogle Scholar
109.Tsai, I.Y., Kimura, M., and Green, P.F., Langmuir 20 (14) (2004) p. 5952.CrossRefGoogle Scholar
107.Zschech, D., Kim, D.H., Milenin, A.P., Hopfe, S., Scholz, R., Goering, P., Senz, S., Hawker, C.J., Russell, T.P., Steinhart, M., and Goesele, U. “High-Temperature-Resistant, Ordered Gold Nanoparticle Arrays,” unpublished.Google Scholar
108.Thurn-Albrecht, T., Schotter, J., Kästle, G.A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C.T., Tuominen, M.T., and Green, P.F., Science 290 (2000) p. 2126.CrossRefGoogle Scholar
109.Kim, D.H., Jia, X., Lin, Z., Guarini, K., and Green, P.F., Adv. Mater. 16 (8) (2004) p. 702.CrossRefGoogle Scholar
110.Kim, D.H., Lau, K.H.A., Jeong, U., Hawker, C.J., Kim, J.K., Russell, T.P., and Knoll, W., “An optical waveguide study on the nanopore formation in block copolymer/homopolymer thin films by selective solvent swelling,” unpublished.Google Scholar
111.Tsai, I.Y., Kimura, M., Stockton, R., Green, A., Puig, R., Jacobson, B., and Green, P.F., J. Biomed. Mater. Res., Pt. A 71A (3) (2004) p. 462.CrossRefGoogle Scholar
112.Yang, S.Y., Ryu, I., Kim, H.Y., Jang, S.K., Kim, J.K., and Green, P.F., “Nanoporous Membrane with Ultrahigh Selectivity and Flux Suitable for Filtration of Viruses,” unpublished.Google Scholar
113.Auschra, C. and Stadler, R., Macromolecules 26 (1993) p. 6364.CrossRefGoogle Scholar
114.Breiner, U., Krappe, U., Abetz, V., and Stadler, R., Macromolecules 198 (1997) p. 1051.Google Scholar
115.Breiner, U., Krappe, U., and Stadler, R., Macromol. Rapid Commun. 17 (1996) p. 567.CrossRefGoogle Scholar
116.Elbs, H., Fukunaga, K., Stadler, R., and Sauer, G., Macromolecules 32 (4) (1999) p. 1204.CrossRefGoogle Scholar