Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T16:00:51.187Z Has data issue: false hasContentIssue false

Bioactive Patterns at the 100-nm Scale Produced Using Multifunctional Physisorbed Monolayers

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Recently, a variety of patterning techniques have reached feature sizes of 100 nm or less, a size range very relevant to biology. Proteins, vesicles, and macromolecular assemblies can now be handled and specifically placed onto predefined artificial patterns, triggering defined functions in cells and revealing the details of cell–surface interactions. Simultaneously, novel surface chemistries have been developed that are able to induce specific bioresponses (e.g., mimicking the features of the extracellular matrix) and at the same time suppress the nonspecific effects of complex biological solutions. This article reviews the basic principles and properties of multifunctional physisorbed monolayers that can be used in combination with nanopatterning techniques to create biologically relevant surface features. Furthermore, selected examples of nanopatterns created by novel combinations of different top-down and bottom-up approaches are presented, including systems with specific bioligands, proteins, vesicles, and cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ratner, B.D. and Bryant, S.J., Annu. Rev. Biomed. Eng. 6 (2004) p. 41.CrossRefGoogle Scholar
2.Niemeyer, C.M. and Mirkin, C.A., Nanobiotechnology (Wiley-VCH, Weinheim, 2004).CrossRefGoogle ScholarPubMed
3.Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., and Sijiao, L., Biotechnol. Adv. 22 (2004) p. 505.CrossRefGoogle Scholar
4.Ekins, R.P., J. Pharm. Biomed. Anal. 7 (1989) p. 155.CrossRefGoogle Scholar
5.Templin, M.F., Stoll, D., Schrenk, M., Traub, P.C., Vohringer, C.F., and Joos, T.O., Drug Discovery Today 7 (2002) p. 815.CrossRefGoogle Scholar
6.Ekins, R.P. and Chu, F.W., Ann. Biol. Clin. (Paris) 50 (1992) p. 337.Google Scholar
7.Xia, Y.N., Rogers, J.A., Paul, K.E., and Whitesides, G.M., Chem. Rev. 99 (1999) p. 1823.CrossRefGoogle Scholar
8.Curtis, A. and Wilkinson, C., Trends Biotechnol. 19 (2001) p. 97.CrossRefGoogle Scholar
9.Wojciak-Stothard, B., Curtis, A., Monaghan, W., Macdonald, K., and Wilkinson, C., Exp. Cell. Res. 223 (1996) p. 426.CrossRefGoogle Scholar
10.Rajnicek, A.N. and McCaig, C.D., J. Cell Sci. 110 (1997) p. 2915.CrossRefGoogle Scholar
11.Wozniak, M.A., Modzelewska, K., Kwong, L. and Keely, P.J., BBA-Mol. Cell Res. 1692 (2004) p. 103.Google Scholar
12.Kingshott, P. and Griesser, H.J., Curr. Opin. Solid State Mater. Sci. 4 (1999) p. 403.CrossRefGoogle Scholar
13.Vermette, P. and Meagher, L., Colloids Surf., B 28 (2003) p. 153.CrossRefGoogle Scholar
14.Morra, M., J. Biomater. Sci., Polym. Ed. 11 (2000) p. 547.CrossRefGoogle Scholar
15.Green, R.J., Tasker, S., Davies, J., Davies, M.C., Roberts, C.J., and Tendler, S.J.B., Langmuir 13 (1997) p. 6510.CrossRefGoogle Scholar
16.Pasche, S., De Paul, S.M., Vörös, J., Spencer, N.D., and Textor, M., Langmuir 19 (2003) p. 9216.CrossRefGoogle Scholar
17.Schreiber, F., Prog. Surf. Sci. 65 (2000) p. 151.CrossRefGoogle Scholar
18.Smith, R.K., Lewis, P.A., and Weiss, P.S., Prog. Surf. Sci. 75 (2004) p. 1.CrossRefGoogle Scholar
19.Harder, P., Grunze, M., Dahint, R., Whitesides, G.M., and Laibinis, P.E., J. Phys. Chem. B 102 (1998) p. 426.CrossRefGoogle Scholar
20.Bearinger, J.P., Terrettaz, S., Michel, R., Tirelli, N., Vogel, H., Textor, M., and Hubbell, J.A., Nature Mater. 2 (2003) p. 259.CrossRefGoogle Scholar
21.Lopez, G.P., Ratner, B.D., Tidwell, C.D., Haycox, C.L., Rapoza, R.J., and Horbett, T.A., J. Biomed. Mater. Res. 26 (1992) p. 415.CrossRefGoogle Scholar
22.Nelson, C.M., Raghavan, S., Tan, J.L., and Chen, C.S., Langmuir 19 (2003) p. 1493.CrossRefGoogle Scholar
23.Kasemo, B., Surf. Sci. 500 (2002) p. 656.CrossRefGoogle Scholar
24.Andersson, A.S., Glasmastar, K., Sutherland, D., Lidberg, U., and Kasemo, B., J. Biomed. Mater. Res. 64 (2003).Google Scholar
25.Massia, S.P. and Hubbell, J.A., J. Cell Biol. 114 (1991) p. 1089.CrossRefGoogle Scholar
26.Huang, N.-P., Vörös, J., DePaul, S.M., Textor, M., and Spencer, N.D., Langmuir 18 (2002) p. 220.CrossRefGoogle Scholar
27.Schmid, E.L., Keller, T.A., Dienes, Z., and Vogel, H., Anal. Chem. 69 (1997) p. 1979.CrossRefGoogle Scholar
28.Hainfeld, J.F., Liu, W., Halsey, C.M.R., Freimuth, P., and Powell, R.D., J. Struct. Biol. 127 (1999) p. 185.CrossRefGoogle Scholar
29.Zehn, G., Eggli, V., Vörös, J., Zammaretti, P., Textor, M., Glockshuber, R., and Kuennemann, E., Langmuir 20 (2004) p. 10464.CrossRefGoogle Scholar
30.Turkova, J., J. Chromatogr. B 722 (1999) p. 11.CrossRefGoogle Scholar
31.Gray, J.J., Curr. Opin. Struc. Biol. 14 (2004) p. 110.CrossRefGoogle Scholar
32.Tosatti, S., Michel, R., Textor, M., and Spencer, N.D., Langmuir 18 (2002) p. 3537.CrossRefGoogle Scholar
33.Textor, M., Ruiz, L., Hofer, R., Rossi, A., Feldman, K., Hahner, G., and Spencer, N.D., Langmuir 16 (2000) p. 3257.CrossRefGoogle Scholar
34.Currie, E.P.K., Norde, W., and Stuart, M.A. Cohen, Adv. Colloid Interfac. 100–102 (2003) p. 205.CrossRefGoogle Scholar
35.Kenausis, G.L., Vörös, J., Elbert, D.L., Huang, N.P., Hofer, R., Ruiz-Taylor, L., Textor, M., Hubbell, J.A., and Spencer, N.D., J. Phys. Chem. B 104 (2000) p. 3298.CrossRefGoogle Scholar
36.Köhler, M. and Fritzsche, W., Nanotechnology: An Introduction to Nanostructuring Techniques (Wiley-VCH, Weinheim, 2004).CrossRefGoogle Scholar
37.Chen, Y. and Pepin, A., Electrophoresis 22 (2001) p. 187.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
38.Deguchi, K. and Haga, T., CR Acad. Sci., Ser. IV Phys. Astrophys. 1 (2000) p. 829.Google Scholar
39.Tseng, A.A., Chen, K., Chen, C.D., and Ma, K.J., IEEE Trans. Electron. Packag. Manuf. 26 (2003) p. 141.CrossRefGoogle Scholar
40.Scheer, H.-C., Schulz, H., Hoffmann, T., and Torres, C.M.S., in Handbook of Thin Film Materials, Vol. 5, edited by Nolwas, H.S. (Academic Press, San Diego, 2002) p. 1.Google Scholar
41.Xia, Y.N. and Whitesides, G.M., Annu. Rev. Mater. Sci. 28 (1998) p. 153.CrossRefGoogle Scholar
42.Brehmer, M., Conrad, L., and Funk, L., J. Dispersion Sci. Technol. 24 (2003) p. 291.CrossRefGoogle Scholar
43.Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X.Y., and Ingber, D.E., Annu. Rev. Biomed. Eng. 3 (2001) p. 335.CrossRefGoogle Scholar
44.Csucs, G., Michel, R., Lussi, J.W., Textor, M., and Danuser, G., Biomaterials 24 (2003) p. 1713.CrossRefGoogle Scholar
45.Renault, J.P., Bernard, A., Bietsch, A., Michel, B., Bosshard, H.R., Delamarche, E., Kreiter, M., Hecht, B., and Wild, U.P., J. Phys. Chem. B 107 (2003) p. 703.CrossRefGoogle Scholar
46.Mayer, M., Yang, J., Gitlin, I., Gracias, D.H., and Whitesides, G.M., Proteomics 4 (2004) p. 2366.CrossRefGoogle Scholar
47.Ginger, D.S., Zhang, H., and Mirkin, C.A., Angew. Chem. Int. Ed. 43 (2004) p. 30.CrossRefGoogle Scholar
48.Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., and Mrksich, M., Science 295 (2002) p. 1702.CrossRefGoogle Scholar
49.Hyun, J., Kim, J., Craig, S.L., and Chilkoti, A., J. Am. Chem. Soc. 126 (2004) p. 4770.CrossRefGoogle Scholar
50.Macilwain, C., Nature 405 (2000) p. 730.CrossRefGoogle Scholar
51.Glass, R., Moller, M., and Spatz, J.P., Nanotechnology 14 (2003) p. 1153.CrossRefGoogle Scholar
52.Park, J.W. and Thomas, E.L., Macromolecules 37 (2004) p. 3532.CrossRefGoogle Scholar
53.Kralchevsky, P.A. and Denkov, N.D., Curr. Opin. Colloid Interface Sci. 6 (2001) p. 383.CrossRefGoogle Scholar
54.Hanarp, P., Sutherland, D.S., Gold, J., and Kasemo, B., Colloid Surf., A 214 (2003) p. 23.CrossRefGoogle Scholar
55.Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J., and Nealey, P.F., Nature 424 (2003) p. 411.CrossRefGoogle Scholar
56.Solak, H.H., David, C., Gobrecht, J., Golovkina, V., Cerrina, F., Kim, S.O., and Nealey, P.F., Microelectron. Eng. 67–68 (2003) p. 56.CrossRefGoogle Scholar
57.Michel, R., Reviakine, I., Sutherland, D., Fokas, C., Csucs, G., Danuser, G., Spencer, N.D., and Textor, M., Langmuir 18 (2002) p. 8580.CrossRefGoogle Scholar
58.Lussi, J.W., Michel, R., Reviakine, I., Falconnet, D., Goessl, A., Csucs, G., Hubbell, J.A., and Textor, M., Prog. Surf. Sci. 76 (2004) p. 55.CrossRefGoogle Scholar
59.Künzi, P.A., Lussi, J., Aeschimann, L., Danuser, G., Textor, M., de Rooij, N.F., and Staufer, U., Microelectron. Eng. (2005) in press.Google Scholar
60.Falconnet, D., Koenig, A., Assi, F. and Textor, M., Adv. Funct. Mater. 14 (2004) p. 749.CrossRefGoogle Scholar
61.Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L., and Zhuang, L., J. Vac. Sci. Technol. B 15 (1997) p. 2897.CrossRefGoogle Scholar
62.Falconnet, D., Pasqui, D., Park, S., Eckert, R., Schift, H., Gobrecht, J., Barbucci, R., and Textor, M., Nano Lett. 14 (2004) p.749.Google Scholar
63.Brugger, J., Berenschot, J.W., Kuiper, S., Nijdam, W., Otter, B., and Elwenspoek, M., Microelectron. Eng. 53 (2000) p. 403.CrossRefGoogle Scholar
64.McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., and Chen, C.S., Dev. Cell 6 (2004) p. 483.CrossRefGoogle ScholarPubMed