Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:25:09.560Z Has data issue: false hasContentIssue false

The Application of Computational Modeling to Pharmaceutical Materials Science

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Computational modeling is a ubiquitous technique in materials science, but until recently this approach has not been widely applied to the drug development process. The formation of particles, their kinematics, and their response to processing stresses are increasingly being studied using computational techniques (computational fluid dynamics and discrete element analysis). These computational techniques can be predictive tools to guide scientists who are designing pharmaceutical dosage forms with specific macroscopic properties. This article gives an overview of the types of computational methods that are used in pharmaceutical materials science and provides examples of their application to some problems from the literature and the authors' own work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chung, T.J.Computational Fluid Dynamics (Cambridge University Press, Cambridge, UK, 2002).CrossRefGoogle Scholar
2. Davidson, D.L. in Proc. 6th World Congress of Chem. Eng. (Institution of Chemical Engineers in Australia, Melbourne, 2001).Google Scholar
3. Cundall, P.A. and Strack, O.D.L., Geotechnique 29 (1979) p.47.CrossRefGoogle Scholar
4. Elghobashi, S.E. and Abou-Arab, T.W., Phys. Fluids 26 (1983) p.931.CrossRefGoogle Scholar
5. Hrenya, C.M. and Sinclair, J.L.AIChE J. 43 (1997) p.853.CrossRefGoogle Scholar
6. Jackson, R.Theory of Dispersed Multiphase Flows, edited by Meyer, R. (Academic Press, New York, 1982) p.291.Google Scholar
7. Chhabra, R.Agarwal, L. and Sinha, N.Powder Technol. 101 (1999) p.88.CrossRefGoogle Scholar
8. Morse, R. and Ballou, C.Chem. Engr. Prog. 47 (1951) p.199.Google Scholar
9. Huilin, L.Yurong, H.Gidaspow, D.Lidan, Y. and Yukun, Q.Powder Technol. 134 (2003) p. 86.CrossRefGoogle Scholar
10. Wachem, B. Van, Schouten, J.Bleek, C. van den, Krishna, R. and Sinclair, J.AIChE J. 47 (2001) p.1291.Google Scholar
11. Fan, R.Marchisio, D. and Fox, R.Powder Technol. 139 (2004) p.7.CrossRefGoogle Scholar
12. Oakley, D.E. and Bahu, R.E.Drying (1991) p.303.Google Scholar
13. Masters, K.Dry. Technol. 12 (1994) p.235.CrossRefGoogle Scholar
14. Southwell, D.B.Langrish, T.A.G. and Fletcher, D.F. in Proc. 1st Asian-Australian Dry. Conf. (1999) p.626.Google Scholar
15. Masters, K.Proc. 10th Int. Dry. Symp. IDS' 96 (1996) p.52.Google Scholar
16. Langrish, T.A.G. and Fletcher, D.F.Dry. Technol. 21 (2003) p.197.CrossRefGoogle Scholar
17. Goula, A. and Adamopoulos, K.Dry. Tech-nol. 22 (2004) p.1107.CrossRefGoogle Scholar
18. DeHaan, W. and Finlay, W.J. Aerosol Sci. 35 (2003) p.309.CrossRefGoogle Scholar
19. Matida, E.Finlay, W.Rimkus, M.Grgic, B. and Lange, C.Aerosol Sci. 35 (2004) p.823.CrossRefGoogle Scholar
20. Coates, M.Fletcher, D.Chan, H. and Raper, J., J.Pharm. Sci. 93 (2004) p.2863.CrossRefGoogle Scholar
21. Han, R.Bakker, A. and Greenspan, B.presented at AAAR 2000, St. Louis, Missouri (2000).Google Scholar
22. Gemci, T.Shortall, B.Allen, G.Corcoran, T. and Chigier, N.Aerosol Sci. 34 (2003) p.1175.CrossRefGoogle Scholar
23. Zhang, Y.Finlay, W. and Matida, E.Aerosol Sci. 35 (2004) p.789.CrossRefGoogle Scholar
24. Kleinstreuer, C. and Zhang, Z.J. Biomed. Eng. 125 (2003) p.197.Google Scholar
25. Allen, G.Shortall, B.Gemci, T.Corcoran, T. and Chigier, N.Trans. ASME 126 (2004) p. 604.Google Scholar
26. Ktitarev, D.V. and Wolf, D.E.Computer Phys. Commun. 121–122 (1999) p.303.CrossRefGoogle Scholar
27. Yanagita, T.Phys. Rev. Lett. 82 (1999) p.3488.CrossRefGoogle Scholar
28. Shinbrot, T.Zeggio, M. and Muzzio, F.J.Powder Technol. 116 (2001) p.224.CrossRefGoogle Scholar
29. Jullien, R.Meakin, P. and Pavlovitch, A.Phys. Rev. Lett. 69 (1992) p.640.CrossRefGoogle Scholar
30. Fitt, A.D. and Wilmott, P.Phys. Rev. A45 (1992) p. 2383.CrossRefGoogle Scholar
31. Baxter, G.W. and Behringer, R.P.Phys. Rev. A42 (1990) p.1017.CrossRefGoogle Scholar
32. Tsimring, L.S.Ramaswamy, R. and Sherman, P.Phys. Rev. E60 (1999) p.7126.Google Scholar
33. Hemmingsson, J.Herrmann, H.J. and Roux, S.J.Phys. I France 7 (1997) p.291.CrossRefGoogle Scholar
34. Kozicki, J. and Tejchman, J.Granular Matter 7 (2005) p.45.CrossRefGoogle Scholar
35. Rosato, A.Prinze, F.Standburg, K.J. and Swendsen, R.Powder Technol. 49 (1986) p.59.CrossRefGoogle Scholar
36. Rosato, A.D.Lan, Y. and Wang, D.T.Powder Technol. 66 (1991) p.149.CrossRefGoogle Scholar
37. Khakhar, D.V.McCarthy, J.J. and Ottino, J.M.Chaos 9 (1999) p.594.CrossRefGoogle Scholar
38. Campbell, C.S. and Brennen, C.E.J. Fluid Mech. 151 (1985) p.167.CrossRefGoogle Scholar
39. Ketterhagen, W.R.Curtis, J.S. and Wassgren, C.R.Phys. Rev. E71 061307 (2005).Google Scholar
40. Campbell, C.S. and Brennen, C.E.J. Appl. Mech. 52 (1985) p.172.CrossRefGoogle Scholar
41. Shishodia, N. and Wassgren, C.Phys. Rev. Lett. 87 084302 (2001).CrossRefGoogle Scholar
42. Shishodia, N. and Wassgren, C.Phys. Rev. Lett. 88 109901 (2001).CrossRefGoogle Scholar
43. Wassgren, C.R.Cordova, J.A.Zenit, R. and Karion, A.Phys. Fluids 15 (2005) p.3318.CrossRefGoogle Scholar
44. Lasinski, M.E.Curtis, J.S. and Pekny, J.F.Phys. Fluids 16 (2004) p.265.CrossRefGoogle Scholar
45. Gera, D.Gautam, M.Tsuji, Y.Kawaguchi, T. and Tanaka, T.Powder Technol. 98 (1998) p.38.CrossRefGoogle Scholar
46. van der, M.A.Hoef, M.Annaland, van Sint, and Kuipers, J.A.M.Chem. Eng. Sci. 59 (2004) p.5157.CrossRefGoogle Scholar
47. Walton, O.R. and Braun, R.L.J. Rheol. 30 (1986) p.949.CrossRefGoogle Scholar
48. Schäfer, J., Dippel, S. and Wolf, D.E.J. Phys. I France 6 (1996) p.5.CrossRefGoogle Scholar
49. Renzo, A. Di and Maio, F.P. Di, Chem. Eng. Sci. 59 (2004) p.525.CrossRefGoogle Scholar
50. Weber, M.W.Hoffman, D.K. and Hrenya, C.M.Granular Matter 6 (2004) p.239.CrossRefGoogle Scholar
51. Cleary, P.W. and Sawley, M.L.Appl. Math. Model. 26 (2002) p.89.CrossRefGoogle Scholar
52. Ting, J.M.Khwaja, M.Meachum, L.R. and Rowell, J.D.Int. J.Num. Anal. Methods Geomech. 17 (1993) p.603.CrossRefGoogle Scholar
53. Moakher, M.Shinbrot, T. and Muzzio, F.J.Powder Technol. 109 (2000) p.58.CrossRefGoogle Scholar
54. Sudah, O.S.Arratia, P.E.Alexander, A. and Muzzio, F.J.AIChE J. 51 (2005) p.836.CrossRefGoogle Scholar
55. Li, H. and McCarthy, J.J.Phys. Rev. E71 021305 (2005).Google Scholar
56. Stewart, R.L.Bridgwater, J.Zhou, Y.C. and Yu, A.B.Chem. Eng. Sci. 56 (2001) p.5457.CrossRefGoogle Scholar
57. Kwapinska, M.Saage, G. and Tsotsas, E.Powder Technol. 161 (2006) p.69.CrossRefGoogle Scholar
58. Kuo, H.P.Knight, P.C.Parker, D.J.Tsuji, Y.Adams, M.J. and Seville, J.P.K.Chem. Eng. Sci. 57 (2002) p.3621.CrossRefGoogle Scholar
59. Thornton, C.Yin, K.K. and Adams, M.J.J.Phys. D: Appl. Phys. 29 (1996) p.424.CrossRefGoogle Scholar
60. Kafui, K.D. and Thornton, C.Powder Technol. 109 (2000) p.113.CrossRefGoogle Scholar
61. Moreno, R.Ghadiri, M. and Antony, S.J.Powder Technol. 130 (2003) p.132.CrossRefGoogle Scholar
62. Potapov, A.V. and Campbell, C.S.Powder Technol. 81 (1994) p.207.CrossRefGoogle Scholar
63. Potapov, A.V. and Campbell, C.S.Powder Technol. 94 (1997) p.109.CrossRefGoogle Scholar
64. Herbst, J.A. and Potapov, A.V.Powder Tech-nol. 143–144 (2004) p. 144.CrossRefGoogle Scholar
65. Neil, A.U. and Bridgwater, J., Powder Technol. 106 (1999) p.37.CrossRefGoogle Scholar
66. Ghadiri, M. and Zhang, Z., Chem. Eng. Sci. 57 (2002) p.3659.CrossRefGoogle Scholar
67. Han, T.Levy, A. and Kalman, H.Powder Technol. 129 (2003) p.92.CrossRefGoogle Scholar
68. Papadopulos, D.G.Teo, C.S. and Ghadiri, M. presented at 3rd World Congress Particle Technol., AIChE (1998) paper 156.Google Scholar
69. Potapov, A.V. and Campbell, C.S.Phys. Fluids 8 (1996) p.2884.CrossRefGoogle Scholar
70. Rotter, J.M. J.M.Holst, F.G.Ooi, J.Y. and Sanad, A.M.Phil. Trans. Royal Soc. London A356 (1998) p.2685.CrossRefGoogle Scholar
71. Hirshfeld, D. and Rapaport, D.C.European Phys. J.E. 4 (2001) p.193.CrossRefGoogle Scholar
72. Tanaka, T.Kajiwara, Y. and Inada, T.Trans. Iron and Steel Institute of Japan 28 (1988) p. 907.CrossRefGoogle Scholar
73. Ketterhagen, W.R.Curtis, J.S.Wass-gren, C.R., Kong, A. and Narayan, P.J. “Segregation during hopper discharge: A DEM and experimental study,” talk 364b, presented at the AIChE Annual Meeting (Cincinnati, OH, November 2, 2005).Google Scholar
74. Langston, P.A.Al-Awamleh, M.A., Fraige, F.Y. and Asmar, B.N.Chem. Eng. Sci. 59 (2004) p.425.CrossRefGoogle Scholar