Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:39:20.979Z Has data issue: false hasContentIssue false

Advanced recording schemes for electron tomography

Published online by Cambridge University Press:  07 July 2016

Tim Dahmen
Affiliation:
German Research Center for Artificial Intelligence, Germany; tim.dahmen@dfki.de
Patrick Trampert
Affiliation:
German Research Center for Artificial Intelligence, Germany; patrick.trampert@dfki.de
Niels de Jonge
Affiliation:
Leibniz Institute for New Materials, Germany; niels.dejonge@leibniz-inm.de
Philipp Slusallek
Affiliation:
German Research Center for Artificial Intelligence, and Saarland University, Germany; slusallek@dfki.de
Get access

Abstract

Three-dimensional (3D) scanning transmission electron microscopy (STEM) has become one of the primary tools for analytical characterization in materials science and also finds increasing use in the life sciences. A number of different recording schemes exist for the acquisition of 3D data using STEM, each capturing different spatial frequencies and, thus, different information about the shape of a specimen. In this article, we present and compare different sampling approaches based on images with both large and small depth of field. We highlight the latest contribution to 3D data acquisition, the combined tilt, and focal series. This recording scheme combines the advantages of tilt series-based tomography with 3D data acquisition using a focal series and is particularly beneficial for imaging specimens with a thickness of 1 µm or greater.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kübel, C., Voigt, A., Schoenmakers, R., Otten, M., Su, D., Lee, T., Carlsson, A., Bradley, J., Microsc. Microanal. 11, 378 (2005).Google Scholar
Midgley, P.A., Dunin-Borkowski, R.E., Nat. Mater. 8, 271 (2009).Google Scholar
Möbus, G., Inkson, B.J., Mater. Today 10, 18 (2007).Google Scholar
Friedrich, H., de Jongh, P.E., Verkleij, A.J., de Jong, K.P., Chem. Rev. 109, 1613 (2009).Google Scholar
Yakushevska, A.E., Lebbink, M., Geerts, W., J. Struct. Biol. 159, 381 (2007).Google Scholar
Engel, A., in Advances in Imaging and Electron Physics: Cold Field Emission and the Scanning Transmission Electron Microscope, Hawkes, P.W., Ed. (Academic Press, Heidelberg, 2009), vol. 159, pp. 357386.Google Scholar
Baudoin, J.-P., Jerome, W.G., Kübel, C., de Jonge, N., PLoS One 8, e55022 (2013).Google Scholar
Hohmann-Marriott, M.F., Soussa, A.A., Azari, A.A., Glushakova, S., Zhang, G., Zimmerberg, J., Leapman, R.D., Nat. Methods 6 (10), 729 (2009).Google Scholar
Aoyama, K., Takagi, T., Hirase, A., Miyazawa, A., Ultramicroscopy 109, 70 (2008).Google Scholar
Hoenger, A., McIntosh, J.R., Curr. Opin. Cell Biol. 21, 89 (2009).Google Scholar
Baumeister, W., Grimm, R., Walz, J., Trends Cell Biol. 9, 81 (1999).Google Scholar
Frank, J., in Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State, Frank, J., Ed. (Oxford University Press, New York, 1996), p. 71.Google Scholar
Heymann, J.A.W., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B., Subramaniam, S., J. Struct. Biol. 155, 63 (2006).Google Scholar
Lee, E., Fahimian, B.P., Iancu, C.V., Suloway, C., Murphy, G.E., Wright, E.R., Castaño-Díez, D., Jensen, G.J., Miao, J., J. Struct. Biol. 164, 221 (2008).Google Scholar
Palmer, C.M., Löwe, J., Ultramicroscopy 137, 20 (2014).Google Scholar
Koster, A.J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J., Baumeister, W., J. Struct. Biol. 120, 276 (1997).Google Scholar
Fernandez, J.J., Micron 43, 1010 (2012).Google Scholar
Penczek, P., Marko, M., Buttle, K., Frank, J., Ultramicroscopy 60, 393 (1995).CrossRefGoogle Scholar
Mastronarde, D.N., J. Struct. Biol. 120, 343 (1997).Google Scholar
Zampighi, G.A., Zampighi, L., Fain, N., Wright, E.M., Cantele, F., Lanzaveccia, S., J. Struct. Biol. 151, 263 (2005).Google Scholar
Harauz, G., van Heel, M., Optik 78, 146 (1986).Google Scholar
Lanzavecchia, S., Cantele, F., Bellon, P.L., Zampighi, L., Kreman, M., Wright, E., Zampighi, G.A., J. Struct. Biol. 149, 87 (2005).CrossRefGoogle Scholar
Behan, G., Cosgriff, E.C., Kirkland, A.I., Nellist, P.D., Philos. Trans. R. Soc. Lond. A 367, 3825 (2009).Google Scholar
Borisevich, A.Y., Lupini, A.R., Pennycook, S.J., Proc. Natl. Acad. Sci. U.S.A. 103, 3044 (2006).Google Scholar
de Jonge, N., Sougrat, R., Northan, B.M., Pennycook, S.J., Microsc. Microanal. 16, 54 (2010).Google Scholar
Dukes, M.J., Ramachandra, R., Baudoin, J.-P., Jerome, W.G., de Jonge, N., J. Struct. Biol. 174, 552 (2011).Google Scholar
Frigo, S.P., Levine, Z.H., Zaluzec, N.J., Appl. Phys. Lett. 81, 2112 (2002).Google Scholar
Ramachandra, R., de Jonge, N., Microsc. Microanal. 18, 218 (2012).Google Scholar
Nellist, P.D., Cosgriff, E.C., Behan, G., Kirkland, A.I., Microsc. Microanal. 14, 82 (2008).CrossRefGoogle Scholar
Takeguchi, M., Hashimoto, A., Shimojo, M., Mitsuishi, K., Furuya, K., J. Electron Microsc. 57, 123 (2008).Google Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G., Nature 470, 374 (2011).Google Scholar
Dahmen, T., Baudoin, J.P., Lupini, A.R., Kübel, C., Slusallek, P., de Jonge, N., Microsc. Microanal. 20, 548 (2014).Google Scholar
Shirley, P., Marschner, S., Eds., Fundamentals of Computer Graphics (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2009), p. 317.Google Scholar
Dahmen, T., Kohr, H., de Jonge, N., Slusallek, P., Microsc. Microanal. 21, 725 (2015).Google Scholar
Dahmen, T., Marsalek, L., Marniok, N., Turoňová, B., Bogachev, S., Trampert, P., Nickels, S., Slusallek, P., Ultramicroscopy 161, 110 (2016).Google Scholar
Dahmen, T., Engstler, M., Pauly, C., Trampert, P., de Jonge, N., Mücklich, F., Slusallek, P., Sci. Rep. 6, 25350 (2016).CrossRefGoogle Scholar