Published online by Cambridge University Press: 02 December 2020
Cadmium sulfide quantum dots (CdS QDs) are semiconductor nanoparticles having sizes in the order of nanometers. They are materials that have outstanding properties for down conversion applications. These nanostructures have been used in the fabrication of white light emitting diodes (WLEDs) in the last years. However, inhomogeneous deposition of CdS QD conversion materials allows unwanted UV light escape. In addition, low efficiency due to strong self-quenching effect, incompatibility between CdS QD solution/crystal polyester resin matrix and reabsorption are common problems that need to be solved. In this work, we try to address the incompatibility between the CdS QD solution/crystal polyester resin matrix by using a solvent exchange procedure. To block the unwanted UV-light escape, we coated our devices with a mixture of graphene carbon quantum dot (GCQD) solution/crystal polyester resin matrix. The QDs and the WLED prototypes were characterized by absorption and photoluminescence (PL) spectroscopy. The QDs embedded in the matrix shown a good homogeneous dispersion. On the other hand, the mixture shown a rapid solidification. These facts indicate a good compatibility between the CdS QDs and the crystal polyester resin. We also observed a considerable reduction of unwanted near UV-light. White light emission from WLED devices with common crystal polyester resin and low-cost materials has been achieved.