Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:43:53.053Z Has data issue: false hasContentIssue false

Tungsten Disulfide Nanodispersions for Inkjet Printing and Semiconducting Devices

Published online by Cambridge University Press:  10 May 2017

Jay A. Desai
Affiliation:
Department of Metallurgical, Materials and Biomedical Engineering University of Texas at El Paso, El Paso, TX 79968, USA.
Nirmal Adhikari
Affiliation:
Department of Electrical and Computer Engineering University of Texas at El Paso, El Paso, TX 79968, USA.
Anupama B. Kaul*
Affiliation:
Department of Electrical and Computer Engineering University of Texas at El Paso, El Paso, TX 79968, USA.
*
*(Email: akaul@utep.edu)
Get access

Abstract

In this work, we demonstrate optical and electrical transport properties of chemically exfoliated WS2 in cyclohexanone/ terpineol solvent using different sonication times. High electrical conductivity of WS2 nanodispersions was observed when appropriate amount of voltage was applied indicating their semi-conductive behavior. Surface morphology of WS2 nanodispersions sonicated at different times were studied using optical microscopy. Optical bandgap of WS2 nanodispersions were determined from optical absorbance spectrum. Inkjet printing was used to demonstrate uniform distribution of WS2 nanosheets and their precise and large scale printability. These dispersions indicate the potential of WS2 in various optoelectronic and semiconducting device applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Kaul, A. B., J. Mater. Res. 29, 348 (2014).CrossRefGoogle Scholar
Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L. and Ferrari, A. C., Mater. Today 15, 564 (2012).CrossRefGoogle Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. and Strano, M. S., Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle Scholar
Song, L., Liu, Z., Reddy, A. L. M., Narayanan, N. T., Taha-Tijerina, J., Peng, J., Gao, G., Lou, J., Vajtai, R. and Ajayan, P. M., Adv. Mater. 24, 4878 (2012).CrossRefGoogle Scholar
Gupta, A., Sakthivel, T. and Seal, S., Prog. Mater. Sci. 73, 44(2015).CrossRefGoogle Scholar
Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. and Coleman, J. N., Science 340, 1226419 (2013).CrossRefGoogle Scholar
Ciesielski, A. and Samori, P., Chem. Soc. Rev. 43, 381 (2014).CrossRefGoogle Scholar
Michel, M., Desai, J. A., Biswas, C. and Kaul, A. B., Nanotechnology 27, 485602 (2016).CrossRefGoogle Scholar
Huang, L., Huang, Y., Liang, J., Wan, X. and Chen, Y., Nano Res. 4, 675 (2011).CrossRefGoogle Scholar
Jha, R. K. and Guha, P. K., Nanotechnology 27, 475503 (2016).CrossRefGoogle Scholar
Ferrari, A. C., Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
Berkdemir, A., Gutierrez, H. R., Botello-Mendez, A. R., Perea-Lopez, N., Elias, A. L., Chia, C-I., Wang, B., Crespi, V. H., Lopez-Urias, F., Charlier, J-C., Terrones, H. and Terrones, M., Sci. Rep. 3 (2013).CrossRefGoogle Scholar
Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P-H. and Eda, G, ACS Nano 7, 791 (2012).CrossRefGoogle Scholar