Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T21:56:20.828Z Has data issue: false hasContentIssue false

Towards Novel Graphene-Enabled Diagnostic Assays with Improved Signal-to-Noise Ratio

Published online by Cambridge University Press:  13 June 2017

Savannah J. Afsahi
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Lauren E. Locascio
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Deng Pan
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Yingning Gao
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Amy E. Walker
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Francie E. Barron
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Brett R. Goldsmith
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Mitchell B. Lerner*
Affiliation:
Nanomedical Diagnostics Inc., 6185 Cornerstone Court East Suite #110, San Diego, CA92121, U.S.A.
Get access

Abstract

Large numbers of high quality graphene transistors were fabricated by chemical vapor deposition and packaged into a standard electronics assembly, enabling the readout of graphene properties on the benchtop. After chemical functionalization, these sensors demonstrate sensitivity into the pM range to inflammation (IL6) and Zika virus (ZIKV NS1) biomarkers. Signal-to-noise ratio (SNR) of graphene biosensors is over an order of magnitude greater than established diagnostic and biophysical assays, namely ELISA and BLI respectively. High precision measurements of protein kinetics captured using this technology, commercially available as the AGILE R100, are comparable to both clinical diagnostic and state-of-the-art biomolecule characterization tools. These results demonstrate that graphene-based platforms are highly attractive biological sensors for next generation diagnostics.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borrebaeck, C. A. K., Immunol. Today 21, 379 (2000).Google Scholar
Graber, M., Gordon, R., and Franklin, N., Acad. Med. 77, 981 (2002).Google Scholar
Findlay, J. W. A., Smith, W. C., Lee, J. W., Nordblom, G. D., Das, I., Desilva, B. S., Khan, M. N., and Bowsher, R. R., J. Pharm. Biomed. Anal. 21, 1249 (2000).Google Scholar
McGlennen, R. C., Clin. Chem. 47, 393 (2001).Google Scholar
Mire-Sluis, a R., Barrett, Y. C., Devanarayan, V., Koren, E., Liu, H., Maia, M., Parish, T., Scott, G., Shankar, G., Shores, E., Swanson, S. J., Taniguchi, G., Wierda, D., and a Zuckerman, L., J Immunol Methods 289, 1 (2004).Google Scholar
Gonzalez, R. M., Seurynck-Servoss, S. L., Crowley, S. A., Brown, M., Omenn, G. S., Hayes, D. F., and Zangar, R. C., J. Proteome Res. 7, 2406 (2008).Google Scholar
Tetin, S. Y. and Stroupe, S. D., Curr. Pharm. Biotechnol. 5, 9 (2004).CrossRefGoogle Scholar
Lu, Y., Goldsmith, B. R., Kybert, N. J., and Johnson, A. T. C., Appl. Phys. Lett. 97, (2010).Google Scholar
Choi, W., Lahiri, I., Seelaboyina, R., and Kang, Y. S., Crit. Rev. Solid State Mater. Sci. 35, 52 (2010).CrossRefGoogle Scholar
Zhan, B., Li, C., Yang, J., Jenkins, G., Huang, W., and Dong, X., Small 10, 4042 (2014).Google Scholar
Zhu, S. E., Krishna Ghatkesar, M., Zhang, C., and Janssen, G. C. A. M., Appl. Phys. Lett. 102, (2013).Google Scholar
Esfandiar, A., Kybert, N. J., Dattoli, E. N., Hee Han, G., Lerner, M. B., Akhavan, O., Irajizad, A., and Charlie Johnson, A. T., Appl. Phys. Lett. 103, (2013).Google Scholar
Lu, Y., Lerner, M. B., John Qi, Z., Mitala, J. J., Hsien Lim, J., Discher, B. M., and Charlie Johnson, A. T., Appl. Phys. Lett. 100, (2012).Google Scholar
Lerner, M. B., Matsunaga, F., Han, G. H., Hong, S. J., Xi, J., Crook, A., Perez-Aguilar, J. M., Park, Y. W., Saven, J. G., Liu, R., and Johnson, A. T. C., Nano Lett. 14, 2709 (2014).Google Scholar
Lerner, M. B., Pan, D., Gao, Y., Locascio, L. E., Lee, K. Y., Nokes, J., Afsahi, S., Lerner, J. D., Walker, A., Collins, P. G., Oegema, K., Barron, F., and Goldsmith, B. R., Sensors Actuators, B Chem. 239, 1261 (2016).Google Scholar
Artiles, M. S., Rout, C. S., and Fisher, T. S., Adv. Drug Deliv. Rev. 63, 1352 (2011).Google Scholar
Choi, Y., Moody, I. S., Sims, P. C., Hunt, S. R., Corso, B. L., Perez, I., Weiss, G. A., and Collins, P. G., Science (80-. ). 335, 319 (2012).Google Scholar
Goldsmith, B. R., Coroneus, J. G., Khalap, V. R., Kane, A. A., Weiss, G. A., and Collins, P. G., Science (80-. ). 315, 77 (2007).Google Scholar
Kybert, N. J., Han, G. H., Lerner, M. B., Dattoli, E. N., Esfandiar, A., and Charlie Johnson, A. T., Nano Res. 7, 95 (2014).Google Scholar
Gao, L., Ren, W., Xu, H., Jin, L., Wang, Z., Ma, T., Ma, L.-P., Zhang, Z., Fu, Q., Peng, L.-M., Bao, X., and Cheng, H.-M., Nat. Commun. 3, 699 (2012).Google Scholar
Hughes, L. J., Goldstein, J., Pohl, J., Hooper, J. W., Lee Pitts, R., Townsend, M. B., Bagarozzi, D., Damon, I. K., and Karem, K. L., Virology 464–465, 264 (2014).Google Scholar