Published online by Cambridge University Press: 15 December 2016
In recent years, tissue engineering has been utilized as an alternative approach to organ transplantation. Success rate of tissue regeneration influenced by the biomaterials, cell sources, growth factors and scaffold fabrication. Design and precise fabrication of scaffolds are required to support cells to expand and migrate to 3D environment. Common scaffold fabrication techniques use heat, adhesives, molds or light. In this research, “inverse-photolithography” which is a light based fabrication technique was used to generate the scaffolds. In order to control the interior architecture of the scaffold “a single vertical strut” and “a y-shape” were fabricated with the 3D printer by using the dissolvable filament. Then, the strut and the y-shape were immersed into the photo-curable solution which is poly(ethylene glycol) diacrylate (PEGDA) and photo-initiator mixture. UV light with the 365nm wavelength was placed up-side down under the solution. Photo-curable mixture was exposed to the UV light for 3 minutes to cure the entire scaffold. Solidified scaffold with the strut and y-shape inside was kept in the limonene solution. Limonene penetrated through the open ended strut and y-shape and it dissolved the 3D printed strut and y-shape away leaving the fabricated PEGDA based scaffolds. This preliminary research showcases, the 3D scaffolds with the controlled interior design, can be fabricated with the “inverse-photolithography” technique.