Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T02:33:02.408Z Has data issue: false hasContentIssue false

Thermal Properties of β-Ga2O3 fromFirst Principles

Published online by Cambridge University Press:  06 January 2016

Marco D. Santia*
Affiliation:
Department of Electrical and Computer Engineering. Michigan State University, East Lansing, MI 48823, USA.
Nandan Tandon
Affiliation:
Department of Electrical and Computer Engineering. Michigan State University, East Lansing, MI 48823, USA.
J. D. Albrecht
Affiliation:
Department of Electrical and Computer Engineering. Michigan State University, East Lansing, MI 48823, USA.
*
*(Email: santiama@msu.edu)
Get access

Abstract

The thermal conductivity, bulk modulus, thermal expansion and heat capacity forbulk β-Ga2O3 are calculated from latticedynamics using both a quasi-harmonic approximation and an anharmonicforce-constant approach involving a solution of the linearized Boltzmanntransport equation. The role of anharmonicity inβ-Ga2O3 is determined to be small, whichleads to the weak volume dependence of the calculated thermal conductivity. Thenegligible anharmonic contribution to the overall thermal conductivity isconsistent with both thermal expansion measurements and also with comparisonsbetween the quasi-harmonic and anharmonic methods. Phonon-mode-dependentGrüneisen parameters are found to be weakly dependent on temperature.Negative values of the mode Grüneisen parameters are found for certainlow energy optical modes, but their net effect on the overall thermal expansionis insignificant. Bulk modulus as well as heat capacity are also given and foundto be in agreement with experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

He, H., Orlando, R., Blanco, M. A., Pandey, R., Amzallag, E., Baraille, I., & Rérat, M. Physical Review B, 74 (19), 195123 (2006)Google Scholar
Ward, A., Broido, D. A., Stewart, D. A., & Deinzer, G. Physical Review B, 80 (12), 125203 (2009)CrossRefGoogle Scholar
Lindsay, L., Broido, D. A., & Reinecke, T. L. Physical review letters, 109 (9), 095901 (2012)CrossRefGoogle Scholar
Esfarjani, K., & Stokes, H. T. Physical Review B, 77 (14), 144112 (2008)Google Scholar
Giannozzi, Paolo, et al. . Journal of Physics: Condensed Matter 21 (39), 395502 (2009)Google Scholar
Togo, A., & Tanaka, I. Scripta Materialia, 108, 15 (2015)Google Scholar
Li, W., Lindsay, L., Broido, D. A., Stewart, D. A., & Mingo, N Physical Review B, 86 (17), 174307 (2012)Google Scholar
Li, W., Carrete, J., Katcho, N. A., & Mingo, N., Physical Review B 185 (6), 17471758 (2014)Google Scholar
Santia, M., Tandon, N. and Albrecht, J.D., Applied Physics Letters, 107, 041907 (2015)Google Scholar
Orlandi, F., Mezzadri, F., Calestani, G., Boschi, F. and Fornari, R., Applied Physics Express 8 (11), 111101 (2015)Google Scholar
K, ., Giri, A., Donovan, B. F., Constantin, C., & Hopkins, P. E. Journal of Applied Physics, 117 (8), 084308 (2015)Google Scholar
Yoshioka, S., Hayashi, H., Kuwabara, A., Oba, F., Matsunaga, K., & Tanaka, I. Journal of Physics: Condensed Matter, 19 (34), 346211. (2007)Google Scholar
Guo, Z., Verma, A., Wu, X., Sun, F., Hickman, A., Masui, T., Kuramata, A., Higashiwaki, M., Jena, D., & Luo, T. Applied Physics Letters, 106 (11), 111909 (2015)Google Scholar
Srivastava, G. P., The physics of phonons. CRC Press (1990)Google Scholar
Barron, T. H. K., & White, G. K Heat capacity and thermal expansion at low temperatures. Springer Science & Business Media. (2012)Google Scholar
Ziman, J. M., Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press (1960)Google Scholar