Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:41:25.913Z Has data issue: false hasContentIssue false

Temperature induced spin crossover behaviour in mononuclear cobalt(II) bis terpyridine complexes

Published online by Cambridge University Press:  08 April 2019

Venkata Nikhil Raj M.
Affiliation:
Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri-305817, Ajmer, Rajasthan, India
Kishalay Bhar
Affiliation:
Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri-305817, Ajmer, Rajasthan, India
Tanveer A. Khan
Affiliation:
Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri-305817, Ajmer, Rajasthan, India
Surbhi Jain
Affiliation:
Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri-305817, Ajmer, Rajasthan, India
Franc Perdih
Affiliation:
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, PO Box537, SI-1000 Ljubljana, Slovenia
Partha Mitra
Affiliation:
Department of Central Scientific Service (CSS), Indian Association for the Cultivation of Science, Kolkata700 032, India
Anuj K. Sharma*
Affiliation:
Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri-305817, Ajmer, Rajasthan, India
*
*Corresponding author: Dr. Anuj K. Sharma (Email: anuj.sharma@curaj.ac.in)
Get access

Abstract

Dicationic cobalt(II) complexes of the type [Co(fterpy)2]c(X)2·nH2O·mCH3OH (fterpy = 4′-(2-furyl)-2,2′:6′,2″-terpyridine; 1: X = PF6-, n = 1.5, m = 0; 2: X = ClO4-, n = 1, m = 1) have been isolated using self-assembly method and characterized by various spectroscopic techniques. In crystalline states both compounds exhibit gradual and incomplete spin crossover (SCO) behaviour in the temperature range 2-320 K. Various spin states of cobalt(II) in 1 have been confirmed by crystallographic evidences at 150 K and 293 K. A variation in counter anions and solvent molecules from 1 to 2 substantially improves the cooperativity among the spin active metal centres and thereby changing the nature of SCO behaviour.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In Memory of Dr. Sunil G. Naik

References

Halcrow, M.A.: Spin-crossover materials: properties and applications, (John Wiley & Sons 2013).CrossRefGoogle Scholar
Brooker, S.: Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Rev. 44, 2880 (2015).CrossRefGoogle ScholarPubMed
Garcia, Y., van Koningsbruggen, P.J., Codjovi, E., Lapouyade, R., Kahn, O. and Rabardel, L.: Non-classical Fe II spin-crossover behaviour leading to an unprecedented extremely large apparent thermal hysteresis of 270 K: application for displays. J. Mater. Chem. 7, 857 (1997).CrossRefGoogle Scholar
Kahn, O. and Martinez, C.J.: Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44 (1998).CrossRefGoogle Scholar
Lefter, C., Davesne, V., Salmon, L., Molnar, G., Demont, P., Rotaru, A. and Bousseksou, A.: Charge transport and electrical properties of spin crossover materials: towards nanoelectronic and spintronic devices. Magnetochemistry 2, 18 (2016).CrossRefGoogle Scholar
Jureschi, C.-M., Linares, J., Boulmaali, A., Dahoo, P.R., Rotaru, A. and Garcia, Y.: Pressure and temperature sensors using two spin crossover materials. Sensors 16, 187 (2016).CrossRefGoogle ScholarPubMed
Galyametdinov, Y., Ksenofontov, V., Prosvirin, A., Ovchinnikov, I., Ivanova, G., Gütlich, P. and Haase, W.: First example of coexistence of thermal spin transition and liquid‐crystal properties. Angew. Chem. Int. Ed. 40, 4269 (2001).3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Bousseksou, A., Molnár, G., Salmon, L. and Nicolazzi, W.: Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev. 40, 3313 (2011).CrossRefGoogle ScholarPubMed
Matsuda, M. and Tajima, H.: Thin film of a spin crossover complex [Fe(dpp)2](BF4)2. Chem. Lett. 36, 700 (2007).CrossRefGoogle Scholar
Real, J.A., Gaspar, A.B. and Munoz, M.C.: Thermal, pressure and light switchable spin-crossover materials. Dalton Trans ., 2062 (2005).CrossRefGoogle ScholarPubMed
Gütlich, P., Ksenofontov, V. and Gaspar, A.B.: Pressure effect studies on spin crossover systems. Coord. Chem. Rev. 249, 1811 (2005).CrossRefGoogle Scholar
Hauser, A.: Light-induced spin crossover and the high-spin→ low-spin relaxation, in Spin Crossover in Transition Metal Compounds II (Springer2004), pp. 155.CrossRefGoogle Scholar
Tailleur, E., Marchivie, M., Daro, N., Chastanet, G. and Guionneau, P.: Thermal spin-crossover with a large hysteresis spanning room temperature in a mononuclear complex. Chem. Commun. 53, 4763 (2017).CrossRefGoogle Scholar
Djemel, A., Stefanczyk, O., Marchivie, M., Trzop, E., Collet, E., Desplanches, C., Delimi, R. and Chastanet, G.: Solvatomorphism‐induced 45 K hysteresis width in a spin‐crossover mononuclear compound. Chem. Eur. J. 24, 14760 (2018).CrossRefGoogle Scholar
Murray, K.S.: Advances in polynuclear iron(II), iron(III) and cobalt(II) spin‐crossover compounds. Eur. J. Inorg. Chem. 2008, 3101 (2008).CrossRefGoogle Scholar
Jornet‐Mollá, V., Duan, Y., Giménez‐Saiz, C., Tang, Y.Y., Li, P.F., Romero, F.M. and Xiong, R.G.: A Ferroelectric Iron (II) Spin Crossover Material. Angew. Chem. 129, 14240 (2017).CrossRefGoogle Scholar
Hogue, R.W., Singh, S. and Brooker, S.: Spin crossover in discrete polynuclear iron(II) complexes. Chem. Soc. Rev. 47, 7303 (2018).CrossRefGoogle ScholarPubMed
Lochenie, C., Schötz, K., Panzer, F., Kurz, H., Maier, B., Puchtler, F., Agarwal, S., Köhler, A. and Weber, B.: Spin-crossover iron (II) coordination polymer with fluorescent properties: Correlation between emission properties and spin state. J. Am. Chem. Soc. 140, 700 (2018).CrossRefGoogle ScholarPubMed
Ortega-Villar, N., Muñoz, M.C. and Real, J.A.: Symmetry breaking in iron(II) spin-crossover molecular crystals. Magnetochemistry 2, 16 (2016).CrossRefGoogle Scholar
Sharma, A.K., De, A. and Mukherjee, R.: Design, structure, and properties of functional metal–ligand inorganic modules. Curr. Opin. Solid State Mater. Sci. 13, 54 (2009).CrossRefGoogle Scholar
Harding, D.J., Harding, P. and Phonsri, W.: Spin crossover in iron(III) complexes. Coord. Chem. Rev. 313, 38 (2016).CrossRefGoogle Scholar
Li, Z.Y., Ohtsu, H., Kojima, T., Dai, J.W., Yoshida, T., Breedlove, B.K., Zhang, W.X., Iguchi, H., Sato, O. and Kawano, M.: Direct Observation of Ordered High‐Spin–Low‐Spin Intermediate States of an Iron(III) Three‐Step Spin‐Crossover Complex. Angew. Chem. Int. Ed. 55, 5184 (2016).CrossRefGoogle ScholarPubMed
Phonsri, W., Harding, P., Liu, L., Telfer, S.G., Murray, K.S., Moubaraki, B., Ross, T.M., Jameson, G.N. and Harding, D.J.: Solvent modified spin crossover in an iron(III) complex: phase changes and an exceptionally wide hysteresis. Chem. Sci. 8, 3949 (2017).CrossRefGoogle Scholar
Gaspar, A.B. and Weber, B.: Spin crossover phenomenon in coordination compounds. Molecular Magnetic Materials: Concepts and Applications, 231 (2017).Google Scholar
Goodwin, H.A.: Spin crossover in cobalt (II) systems, in Spin Crossover in Transition Metal Compounds II (Springer 2004), pp. 23.CrossRefGoogle Scholar
Krivokapic, I., Zerara, M., Daku, M.L., Vargas, A., Enachescu, C., Ambrus, C., Tregenna-Piggott, P., Amstutz, N., Krausz, E. and Hauser, A.: Spin-crossover in cobalt(II) imine complexes. Coord. Chem. Rev. 251, 364 (2007).CrossRefGoogle Scholar
Hayami, S., Komatsu, Y., Shimizu, T., Kamihata, H. and Lee, Y.H.: Spin-crossover in cobalt (II) compounds containing terpyridine and its derivatives. Coord. Chem. Rev. 255, 1981 (2011).CrossRefGoogle Scholar
Cowan, M.G., Olguín, J., Narayanaswamy, S., Tallon, J.L. and Brooker, S.: Reversible switching of a cobalt complex by thermal, pressure, and electrochemical stimuli: abrupt, complete, hysteretic spin crossover. J. Am. Chem. Soc. 134, 2892 (2011).CrossRefGoogle ScholarPubMed
Palion-Gazda, J., Świtlicka-Olszewska, A., Machura, B., Grancha, T., Pardo, E., Lloret, F. and Julve, M.: High-Temperature Spin Crossover in a Mononuclear Six-Coordinate Cobalt(II) Complex. Inorg. Chem. 53, 10009 (2014).CrossRefGoogle Scholar
Guo, Y., Yang, X.-L., Wei, R.-J., Zheng, L.-S. and Tao, J.: Spin Transition and Structural Transformation in a Mononuclear Cobalt (II) Complex. Inorg. Chem. 54, 7670 (2015).CrossRefGoogle Scholar
Hayami, S., Karim, M.R. and Lee, Y.H.: Magnetic Behavior and Liquid‐Crystal Properties in Spin‐Crossover Cobalt (II) Compounds with Long Alkyl Chains. Eur. J. Inorg. Chem. 2013, 683 (2013).CrossRefGoogle Scholar
Hayami, S., Kato, K., Komatsu, Y., Fuyuhiro, A. and Ohba, M.: Unique spin transition and wide thermal hysteresis loop for a cobalt (II) compound with long alkyl chain. Dalton Trans. 40, 2167 (2011).CrossRefGoogle ScholarPubMed
Miller, R.G., Narayanaswamy, S., Tallon, J.L. and Brooker, S.: Spin crossover with thermal hysteresis in cobalt (II) complexes and the importance of scan rate. New J. Chem. 38, 1932 (2014).CrossRefGoogle Scholar
Tao, J., Maruyama, H. and Sato, O.: Valence Tautomeric Transitions with Thermal Hysteresis around Room Temperature and Photoinduced Effects Observed in a Cobalt−Tetraoxolene Complex. J. Am. Chem. Soc. 128, 1790 (2006).CrossRefGoogle Scholar
Bhar, K., Khan, S., Costa, J.S., Ribas, J., Roubeau, O., Mitra, P. and Ghosh, B.K.: Crystallographic Evidence for Reversible Symmetry Breaking in a Spin‐Crossover d7 Cobalt (II) Coordination Polymer. Angew. Chem. 124, 2184 (2012).CrossRefGoogle Scholar
Agustí, G., Bartual, C., Martínez, V., Muñoz-Lara, F.J., Gaspar, A.B., Muñoz, M.C. and Real, J.A.: Polymorphism and “reverse” spin transition in the spin crossover system [Co (4-terpyridone) 2](CF 3 SO 3) 2· 1H 2 O. New J. Chem. 33, 1262 (2009).CrossRefGoogle Scholar
Galet, A., Gaspar, A.B., Muñoz, M.C. and Real, J.A.: Influence of the Counterion and the Solvent Molecules in the Spin Crossover System [Co(4-terpyridone)2]Xp⊙nH2O. Inorg. Chem. 45, 4413 (2006).CrossRefGoogle Scholar
Gaspar, A.B., Muñoz, M.C., Niel, V. and Real, J.A.: [CoII(4-terpyridone)2]X2: A Novel Cobalt(II) Spin Crossover System [4-Terpyridone= 2, 6-Bis (2-pyridyl)-4 (1 H)-pyridone]. Inorg. Chem. 40, 9 (2001).CrossRefGoogle Scholar
Beckmann, U. and Brooker, S.: Cobalt (II) complexes of pyridazine or triazole containing ligands: spin-state control. Coord. Chem. Rev. 245, 17 (2003).CrossRefGoogle Scholar
Amolegbe, S.: Supramolecular architectures self-assembled using long chain alkylated spin crossover cobalt (II) compounds. Chem. Commun. 53, 4685 (2017).Google Scholar
Constable, E.C., Dunphy, E.L., Housecroft, C.E., Neuburger, M., Schaffner, S., Schaper, F. and Batten, S.R.: Expanded ligands: bis (2, 2′: 6′, 2 ″-terpyridine carboxylic acid) ruthenium (II) complexes as metallosupramolecular analogues of dicarboxylic acids. Dalton Trans ., 4323 (2007).CrossRefGoogle ScholarPubMed
PRO, R.O.D.C.: Rigaku Oxford Diffraction. Yarnton, England (2015).Google Scholar
Sheldrick, G.M.: SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sec. A 71, 3 (2015).CrossRefGoogle ScholarPubMed
Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C 71, 3 (2015).CrossRefGoogle ScholarPubMed
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A. and Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339 (2009).CrossRefGoogle Scholar
Spek, A.L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7 (2003).CrossRefGoogle Scholar
Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M. and Streek, J.v.d.: Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 39, 453 (2006).CrossRefGoogle Scholar
Bain, G.A. and Berry, J.F.: Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532 (2008).CrossRefGoogle Scholar
Nakamoto, K.: Infrared and R aman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy (2006).CrossRefGoogle Scholar
Roy, S., Choubey, S., Bhar, K., Sikdar, N., Costa, J.S., Mitra, P. and Ghosh, B.K.: Counter anion dependent gradual spin transition in a 1D cobalt(II) coordination polymer. Dalton Trans. 44, 7774 (2015).CrossRefGoogle Scholar
Kremer, S., Henke, W. and Reinen, D.: High-spin-low-spin equilibriums of cobalt (2+) in the terpyridine complexes Co(terpy)2X2.nH2O. Inorg. Chem. 21, 3013 (1982).CrossRefGoogle Scholar
Pai, S., Schott, M., Niklaus, L., Posset, U. and Kurth, D.G.: A study of the effect of pyridine linkers on the viscosity and electrochromic properties of metallo-supramolecular coordination polymers. J. Mat. Chem. C 6, 3310 (2018).CrossRefGoogle Scholar
Kilner, C.A. and Halcrow, M.A.: An unusual discontinuity in the thermal spin transition in [Co (terpy)2][BF4]2. Dalton Trans. 39, 9008 (2010).CrossRefGoogle ScholarPubMed
Slichter, C. and Drickamer, H.: Pressure‐induced electronic changes in compounds of iron. The Journal of Chemical Physics 56, 2142 (1972).CrossRefGoogle Scholar
Harris, C., Lockyer, T., Martin, R., Patil, H. and Sinn, E.: Five-and six-coordinated complexes of cobalt (II) with 2, 2’, 2’-terpyridyl: Unusual structure and magnetism. Aust. J. Chem. 22, 2105 (1969).CrossRefGoogle Scholar