Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T02:33:49.043Z Has data issue: false hasContentIssue false

Temperature Dependence of Enthalpy and Heat Capacity of Alkanes and Related Phase Change Materials (PCMs) with a Peltier-element-based Adiabatic Scanning Calorimeter

Published online by Cambridge University Press:  02 May 2016

Jan Leys
Affiliation:
Soft Matter and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D box 2416, B-3001 Leuven, Belgium. Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d'Opale, 145 avenue M. Schumann, F-59140 Dunkerque.
Christ Glorieux
Affiliation:
Soft Matter and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D box 2416, B-3001 Leuven, Belgium.
Jan Thoen*
Affiliation:
Soft Matter and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D box 2416, B-3001 Leuven, Belgium.
Get access

Abstract

Research in the field of phase change materials (PCMs) requires that the temperature dependence of the thermal storage capacity be well known for the selection of PCMs as well as for simulation input. A differential scanning calorimeter (DSC) is often used, but it substantially misrepresents the true heat capacity in the vicinity of large-enthalpy phase transitions. Therefore, other suitable experimental techniques should be applied for the determination of the thermal storage capacity. Peltier-element-based adiabatic scanning calorimetry (pASC) measures the heat capacity and the enthalpy of PCMs in thermodynamic equilibrium, thus removing the rate dependence and deformation that are inherent to DSC. The technique is illustrated here by measurements on the pure alkane tricosane (C23), the commercial alkane mixture RT42 and its bound counterpart PX42.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mehling, H. and Cabeza, L. F., Heat and cold storage with PCM — An up to date introduction into basics and applications (Springer, Berlin, Heidelberg, 2008).Google Scholar
Günther, E., Mehling, H., Hiebler, S., and Redlich, R., Int. J. Thermophys. 30, 1257 (2009).Google Scholar
Lazaro, A., Peñalosa, C., Solé, A., Diarce, G., Haussmann, T., Fois, M., Zalba, B., Gshwander, S., and Cabeza, L. F., Appl. Energy 109, 415 (2013).Google Scholar
Leys, J., Losada-Pérez, P., Glorieux, C., Thoen, J., J. Therm. Anal. Calorim. 177, 173 (2014).Google Scholar
Leys, J., Losada-Pérez, P., Slenders, E., Glorieux, C., and Thoen, J., Thermochim. Acta 582, 68 (2014).CrossRefGoogle Scholar
Thoen, J., in Heat capacities: liquids, solutions and vapours, edited by Wilhelm, E. and Letcher, T. M. (The Royal Society of Chemistry, London, 2010) pp. 287306.Google Scholar
Thoen, J., Leys, J., and Glorieux, C., “Adiabatic scanning calorimeter,” European Patent EP 2 591328 B1 (Sept 2, 2015), US Patent: allowed for issuance of a patent.Google Scholar
Leys, J., Glorieux, C., and Thoen, J., in Proceedings of the 31th International Thermal Conductivity Conference and 19th International Thermal Expansion Symposium, June 26–30, 2011, Saguenay, Qc, Canada, edited by Kiss, L. and St.-Georges, L. (DEStech Publications Inc., Lancaster, PA, U.S.A., 2013) pp. 5766.Google Scholar
Losada-Pérez, P., Mertens, N., de Medio-Vasconcelos, B., Slenders, E., Leys, J., Peeters, M., van Grinsven, B., Gruber, J., Glorieux, C., Pfeiffer, H., Wagner, P., and Thoen, J., Adv. Condens. Matter Phys. 2015, 1 (2015).Google Scholar
Sirota, E. B. and Singer, D. M., J. Chem. Phys. 101, 10873 (1994).Google Scholar
Sirota, E. B., King, H. E. Jr., Shao, H. H., and Singer, D. M., J. Chem. Phys. 99, 798 (1995).Google Scholar
Dirand, M., Bouroukba, M., Chevallier, V., Petitjean, D., Behar, E., and Ruffier-Meray, V., J. Chem. Eng. Data 47, 115 (2002).CrossRefGoogle Scholar
Rubitherm Technologies GmbH, http://www.rubitherm.eu, accessed November 5, 2015.Google Scholar