Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T01:02:58.531Z Has data issue: false hasContentIssue false

Surfactant assisted synthesis of SrFe10Al2O19: Magnetic and Supercapacitor ferrite

Published online by Cambridge University Press:  28 June 2016

D. Neupane
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152, USA
H. Adhikari
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152, USA
B. Sapkota
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152, USA Department of Physics, Northeastern University, Boston, MA 602115, USA
J. Candler
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
R. Gupta
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
S. R. Mishra*
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152, USA
Get access

Abstract

The aluminum doped SrFe12O19 hexaferrite samples were prepared via co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB content (x = 0, 1, 3, 6 and 9 wt. %) on the structure, morphology, and electrocapacitive behavior of the SrFe10Al2O19 nanoparticles were investigated. The use of CTAB was observed to be effective in eliminating α-Fe2O3 phase from samples. Morphological changes including grain and crystallite size was noticed with the increase in the CTAB content. With the increase in CTAB, powder particles grew in size and thickness. A concomitant increase in magnetization due to crystal growth was observed. Electrochemical performance of supercapacitors was evaluated by cyclic voltammetry (CV). Highest power density of 368.09 WKg-1 and energy density of 0.916 WhKg-1 was observed for 3% and 1% CTAB samples, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Largeot, C., Portet, C., Chmiola, J., Taberna, P., Gogotsi, Y., and Simon, P., J. Am. Chem. Soc..130, 2730 (2008).CrossRefGoogle Scholar
Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M., and Wei, F., Carbon, 48, 3825 (2010).CrossRefGoogle Scholar
Xia, X. H., Tu, J. P., Mai, Y. J., Wang, X. L., Gua, C. D., and Zhao, X. B., J. Mater. Chem. 21, 9319 (2011).CrossRefGoogle Scholar
Chen, S., Zhu, J., Wu, X., Han, Q., and Wang, X. ACS Nano, 4, 2822 (2010).CrossRefGoogle Scholar
Hu, C. C., Liu, M. J., and Chang, K. H, J. Power Sources, 163, 1126 (2007).CrossRefGoogle Scholar
Ramani, M., Haran, B. S., White, R. E., and Popov, B. N., J. Electrochem. Soc. 148, 374 (2001).CrossRefGoogle Scholar
Du, X., Wong, C., Chen, M., and Wang, Y. J., J. Phys. Chem. C. 113, 2643 (2009)CrossRefGoogle Scholar
Ji, G. B., Tang, S. L., Ren, S. K., Zhang, F. M., Gu, B. X., and Du, Y. W., J. Cryst Growth, 270, 156 (2004).CrossRefGoogle Scholar
Du, Y., Gao, H., Liu, X., Wang, J., Xu, P., and Han, X., J. Mater. Sci. 45, 2442 (2010).CrossRefGoogle Scholar
Chen, D. Y., Meng, Y. Y., Zeng, D. C., Liu, Z.W., Yu, H. Y., and Zhong, X. C., Mater. Lett. 76, 84 (2012).CrossRefGoogle Scholar
Besson, S., Ricolleau, C., Gacoin, T., Jacquiod, C., and Boilot, J. P., J. Phys. Chem. B, 104, 12095 (2000).CrossRefGoogle Scholar
Grosso, D., Balkenende, A. R., Albouy, P. A., Lavergue, M., Mazeroiks, L., and Babonneak, F., J. Mater. Chem. 10, 2085 (2000).CrossRefGoogle Scholar
Yan, L., Li, Y. D., Deng, Z. X., Zhuang, J., and Sun, X., Int. J. Inorg. Mater. 3, 633 (2001).CrossRefGoogle Scholar
Moriyamaa, A. L. L., Madigou, V., Pereira de Souza, C., and Leroux, C., Powder Tech. 256 482 (2014).CrossRefGoogle Scholar
Ravinder, D. and Rangamohan, G., Mater. Lett. 44, 139 (2000).CrossRefGoogle Scholar
Neupane, D., Wang, L., Mishra, S. R., Poudyal, N., and Liu, J. P., J. Appl. Phys. 117, 17D158 (2015).CrossRefGoogle Scholar
Zi, Z. F., Sun, Y. P, Zhu, X. B, and Yang, Z. R, Dai, J. M, and Song, W. H.. J. Magn. Mater. 320, 2746 (2008).CrossRefGoogle Scholar
Rehman, M. A. and Asghar, G., J. Alloys Comp. 509, 435 (2011).CrossRefGoogle Scholar
Chen, L., Zhang, D. J., Chen, J. M., Zhou, H. D. and Wan, H. Q., Mater. Sci. Eng. A, 415, 156 (2006).CrossRefGoogle Scholar
Wang, Y. X., Sun, J., Fan, X. Y., and Yu, X. Ceram Inter. 37, 3431 (2011).CrossRefGoogle Scholar
He, Q. J., Cui, X. Z., Cui, F. M., Guo, L. M., and Shi, J. L., Microporous Mater. 117, 609 (2009).CrossRefGoogle Scholar
Zhao, L., Zhang, H., Xing, Y., Song, S., Yua, S., Shi, W., Guo, X., Yang, J., Lei, Y., and Cao, F., J. Solid. State. Chem. 181, 245 (2008).CrossRefGoogle Scholar
Randles, J. E. B., Trans Faraday Soc. 44, 327 (1948).CrossRefGoogle Scholar
Sevcik, A., Collect Czech Chem. Commun. 13, 349 (1948).CrossRefGoogle Scholar
Ding, R., Qi, L., Wang, H., J. Solid State Electrochem 16, 3621 (2012).CrossRefGoogle Scholar