Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:17:09.240Z Has data issue: false hasContentIssue false

Static and dynamic behavior of aggrecan solutions

Published online by Cambridge University Press:  23 December 2019

Ferenc Horkay*
Affiliation:
Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-5772, USA
Peter J. Basser
Affiliation:
Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-5772, USA
Erik Geissler
Affiliation:
Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, and CNRS, LIPhy, F-38402 St Martin d’Hères cedex, France
Get access

Abstract

Small angle neutron scattering (SANS) and dynamic light scattering (DLS) measurements were made on near physiological solutions of a bottlebrush shape polyelectrolyte, aggrecan. Aggrecan is a biologically important molecule whose complexes with hyaluronic acid (HA) provide the osmotic resistance of cartilage. We have investigated the effect of complexation of aggrecan with HA on the structure and dynamic properties of aggrecan solutions. SANS reveals that the supramolecular structure of aggrecan assemblies is only marginally affected by the HA. DLS indicates that the dynamic response of the aggrecan-HA complex is slower than that of the corresponding aggrecan solution. However, addition of calcium ions slightly increases the relaxation rate of the autocorrelation function of the aggrecan solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wight, T., Mecham, R.. eds. Biology of Proteoglycans (Biology of Extracellular Matrix), Academic, New York 1987.Google Scholar
Hascall, V.C., ISI Atlas of Science: Biochemistry 1, 189 (1988).Google Scholar
Rosenberg, I., Hellmann, W., Kleinschmidt, A.K.. J. Biochem. 245, 4123 (1970).Google Scholar
Rosenberg, I., Hellmann, W., Kleinschmidt, A.K.. J. Biochem. 250, 1877 (1975).Google Scholar
Hascall, V.C.. J. Supramol. Struct. 7, 101 (1977).CrossRefGoogle Scholar
Ng, L., Grodzinsky, A. J., Sandy, J. D., Plaas, A. H. K., Ortiz, C., J. Struct. Biol. 143, 242 (2003).CrossRefGoogle Scholar
Kisiday, J., Jin, M., Kurz, B., Hung, H. H., Semino, C., Zhang, S., Grodzinsky, A. J., Proc. Natl. Acad. Sci. U.S.A. 99, 9996 (2002).CrossRefGoogle Scholar
Fogolari, F., Brigo, A., Molinari, H., J. Mol. Recognit. 15, 379 (2002).CrossRefGoogle Scholar
NIST Cold Neutron Research Facility, NG3 and NG7 30-m. SANS Instruments Data Acquisition Manual, January 1999.Google Scholar
Horkay, F., Basser, P. J., Hecht, A. M., Geissler, E., J. Chem. Phys. 128, 135103 (2008).CrossRefGoogle Scholar
Berne, R., Pecora, R., Dynamic Light Scattering, Academic, London 1976.Google Scholar
de Gennes, P. G., Scaling Concepts in Polymer Physics, Cornell, Ithaca NY 1979.Google Scholar
Koppel, D. E., J. Chem. Phys. 57, 4814 (1972).CrossRefGoogle Scholar
Dubois-Violette, M. and de Gennes, P. G., Physics [N.Y.] 3, 37 (1967).Google Scholar
Zhang, Y., Douglas, J. F., Ermi, B. D., Amis, E. J., J. Chem. Phys. 114, 3299 (2001).CrossRefGoogle Scholar