Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:13:21.080Z Has data issue: false hasContentIssue false

Selective-area InAsSb Nanowires on InP for 3 – 5 μm Mid-wavelength Infrared Optoelectronics

Published online by Cambridge University Press:  15 May 2017

Dingkun Ren*
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095, USA
Alan C. Farrell
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095, USA
Diana L. Huffaker
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095, USA California NanoSystems Institute, University of California at Los Angeles, Los Angeles, California 90095, USA School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF24 3AA, UK
Get access

Abstract

We demonstrate high vertical yield InAs1-xSbx (0 < x ≤ 0.18) nanowire arrays grown on InP (111)B substrates by calalyst-free selective-area metal-organic chemical vapor deposition. High antimony composition is achieved by pulsing the arsenic flow to reduce the effective arsenic partial pressure while keeping the antimony partial pressure fixed. This increases the antimony vapor phase composition while allowing the antimony partial pressure to be kept low enough to avoid antimony condensation on the growth mask. InAsSb nanowire arrays show strong emission by photoluminescence at 77 K, covering a wavelength range of 3.77 – 5.08 μm. These results pave the way to engineering optical properties and enabling hybrid integration for nanoscale mid-wavelength infrared optical devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Glas, F., Phys. Rev. B. 74, 121301 (2006).Google Scholar
Farrell, A. C., Lee, W.-J., Senanayake, P., Haddad, M. A., Prikhodko, S. V. and Huffaker, D. L., Nano Lett. 15, 66146619 (2015).Google Scholar
Ren, D., Farrell, A. C., Williams, B. S. and Huffaker, D. L. (submitted to Nanoscale, 2017).Google Scholar
Anyebel, E. A., Rajpalke, M. K., Veal, T. D., Jin, C. J., Wang, Z. M. and Zhuang, Q. D., Nano Res., 8, 13091319 (2015).CrossRefGoogle Scholar
Zhuang, Q. D., Alradhil, H., Jin, Z. M., Chen, X. R., Shao, J., Chen, X, Sanchez, Ana M., Cao, Y. C., Liu, J. Y., Yates, P., Duross, K. and Jin, C. J., Nanotechnology, 28, 105710 (2017).CrossRefGoogle Scholar